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ABSTRACT

Pursuit and Evasion problems are probably the most natural
application of differential game theory and have been treated by many
authors as such. Very few problems of this class can be solved
analytically. Fast and efficient numerical algorithm is needed to
solve for an optimal or near optimal solution of a realistic pursuit
and evasion differential game.

Some headways have been made in the development of numerical
algorithm for this purpose. Most researchers, however, worked under
an assumption that a saddle point exists for their differential game.
Here, it is shown via two examples and a nonlinear stochastic
differential game that such is not the case.

A first-order algorithm for computing an optimal control for each
player, subject to control and/or state constraints, is developed without
the assumption of saddle point existence. It is shown that a linear
quadratic differential game with control and/or state constraints
generally cannot be solved analytically. One such problem is developed
and solved by the above algorithm. A new rationalization is offered
in formulating a missile anti-missile problem as a nonlinear stochastic
differential game. The algorithm developed here together with a
convergence control method introduced by Jarmark is used to solve

the missile anti-missile problem with fast computation time.
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CHAPTER 1

INTRODUCTION, LITERATURE SURVEY, AND

SCOPE OF DISSERTATION

Pursuit and Evasion problems have Eeen treated by many
authors as differential games. Analytically, only linear
quadratic differential games have been solved. Functional
Analysis has served as a good tidy approach to gain valuable
insights to some aspects of differential games theory. How-
ever, only the simplest mathematical problems which represent
very small or no resemblance of physical realization of real
life has been solved 6; this approach.

Presently, the hope to solve for an optimal or near
optimal solution of a realistic pursuit and evasion dif-
ferential game does seem to lie on efficient numerical
algorithms. To make this dissertation as self contained
as possible, we shall start off with a brief background and
history of game theory through literature survey of the
game theory in general, narrow down to the work done on
numerical sol:u*ions which will be included in the next
chapter. A general structure of differential game will
then be formulated. The formulation of yathematical model
of differential game will be discussed. Lastly, we shall
conclude this chapter with the statements and the signi-

ficance of what we hope to accomplish in this dissertation.
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l.1 Literature Survey

The problem of pursuit as a mathematical model was
originated in the fifteenth century by Leonardo da Vinci
according to pavis(1l)., 1n 1732 Bougner proposed and solved
for an optimal curve by which a vessel moves in pursuing
another which flees along a straight line, supposing that
the velocities of the two vessels are always in the same
ratio. More recently, Hathaway,Archibald, and Manning$3)'(4»
in 1921 worked on a more difficult problem in which the
evader moves on a circle.

During the same year (1921) Emile Borel attempted to
abstract strategic situations of game theory into a mathe-
atical theory of strategy. After John von Neumann proved
the Minimax Theorem in ]928, the theory was firmly esta-
blished. However, the academic interests in the game
i theory did not catch on until the publication in 1944 of
. ' the impressive work by John von Neumann and Oskar Morgen-

stern, Theory of Games and Economic Behavior. The theme

of this book pointed out a new approach to the general
problem of competetive behavior specifically in economics
through a study of games of strategy. It was soon realized
that the applications of the theory are not limited only to
economics but also could be applied to the military, poli-
tics, and other civil organizations as well.

Since then a great amount of research on game theory

(13)

was published, a bibliography compiled in 1959° contains
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more than one thousand entries. It is therefore impossible

to mention all these reports. Only a brief overview of the
section of the field that is closely related to this dis-
sertation will be presented here.

It is interesting to note that the games of pursuit
mentioned so far in the preceeding paragraphs are one-sided
optimal control problems where only the pursuers have free-
dom of movement while the evaders move on pre determined
trajectories. A new dimension in which both players have
the freedom to choose their motions was added by Isaacs
when he began the development of the theory of differential
games at the Rand Corporation(sx. Isaacs compiled all his
results in a book{?) published in 1965. Ho(8) provided the
control engineers with the review of Isaacs' book in a more
familiar terminology. It was here that the elements of game
theory was married to the theory of optimal control.
Briefly, Isaacs is concerned with problems with payoff
function.

T(xg,u(t) ,v(t)) = F(x(T),T) + J‘T L(x(t) ,u(t) ,v(t) ;t)dt
° (1:1)
and dynamics

x = £(x,u,vit) x(0) = x5 . (1.2)
where T is the final time or the time when the state tra-
jectory meets a given terminal manifold. He assumes that a
saddle point exist, an assumption which is not always true.

The precise me. ..g ¢ a saddle point will be given in the




| next chapter when we discuss the solution of Differential
E. Games. At the saddle point, the payoff function is called
the value of the game and is designated by J*(§,t). Isaacs
uses what he called the Tenet of Transition, a game theory
l! equivalent of Bellman's Principle of Optimality which he

i{ apparently found independently in fact may have predated

it to show that the value function must satisfy his Main

Equation One, or ME ,
1

* %7

8J + min max (J .f(x,u,vit) + L(x,u,v;t)] = 0 (1.3)
3 uw v x

*

* *
In principle, ME can be used to solved for u = u (x,J ;t)
* »1 * * X
and v = v (x,J, jt). uand v are then substitued back into

ME to give the Main Equation Two, or ME,,
1

23 + J, .f(x,u*,vi;t) + L(§.9_*.z*:t) =0 (1.4)

This is a Hamilton-Jacobi type equation and is often re-
ferred to as a Hamilton-Jacobi-Bellman equation or a pre-
Hamiltonian equation which is somewhat of an injustice to
Isaacs. These equations will be used in our development of
a numerical algorithm in the next chapter.

Isaacs also contributes towards the sufficiency part
of the solution of the game through his so called Verifica-
tion Theorem. 1In essence, he states that if J*(§,t) is a

unique continuous function satisfying the main equations
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and the boundary condition J*(x(T),T) = F(x(T),T), then J"
is the value of the game and any Ef and g* which satisfy
ME, and caused the desired end points to be reached are
optimal. He proves this theory as the limit of a convergent
series of discrete approximations to the differential game.
Gadzhiev(IS)worked out necessary and sufficient con-
ditions for the existence of a pure strategy solution for
a prdblem with quadratic cost function and linear dynamic
systems. He stated also that a pure a strategy solution
for general differential game might not exist. In exploring
the application of the celebrated Minimax Principle, he met
only limited success because of the difficulty indefining a
probability measure for the controls available for play
which are time functions with infinite variability in
magnitude.
The most rigorous treatment to date contain in the work

(14) and Berkovitz(IO). Friedman in his book

of Freidman
published in 1971 uses Functional Analysis approach and went
through a mathematical maze of complications to obtain
essentially the same results as Isaacs. Berkovitz extended
results of the classical calculus of variations to zero-sum-
two-person differential games. His main results are: under

same fairly restrictive conditions with the Hamiltonian-like

function

+p .f(g,g.g) (1.5)
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. %*
the optimal control u* and v satisfy the following equations

. * *
X = HB(:_:.g.y_,a)

® * *

P = = Hyx(x,u,v,p) ' (1.6
H + g,T = T = .

(
o

A &0 gy = AP0 _aigy= 0

where g; and g, are contraint functions on u and v respect-
ively, ¢ and ¢ are associated Lagrange multipliers. He
also establishes sufficiency conditions using field concepts.
All these results applies under the assumption of existence
of a saddle point, again we may emphasize, an assumption
that is not always true.

As mentioned before in the opening statement, analyti-
cal results have indeed been rare except for the problem
with linear dynamics and quadratic cost. Athans(ls)presents
a review of recent works on differential games. Ho, Bryson
and Baron(l7)model and solve a persuit-evasion problem as a
linear quadratic game, deriving conditions for existence of
solution. The meagerness in analytical results according
to Ho(s)is a direct consequence of the complications and
the complexities introduced into the optimal control problem

by the "other" controller,.




........

McFarland(ls)stated that most authorshelect to treat
each player's control with no constraint nsing integral
penalities in the cost function to preclude any solution
with infinite magnitude. Published resuylts have indeed
been rare for differential games with bounded control. Pro-

(19) (20) on determinis-

gress were made by Meschler and Mier
tic problems of simple construction permitting analytical
treatment. Mier suggested that under close examination
generalization cannot be made. Other authors have made some
headways in this respect using numerical analysis. These
will be mentioned in the next chapter.

Another interesting approach to differential games is
the so called geometric approach. Some of the more signi-
ficant contributions in this respect are the work of Blag-

uiere, Gerard, and Leitman‘ZI)'(zz)'(23)in an augmented

(24)
state space. Karlin and Shapley- also used geometric

approach to provoke a rigorous investigation into the
geometry of moment spaces. The more recent works an geome-

(25)
tric approach to game theory are those of Westphal - and

(26)

Westphal and Stubberud where they synthesize mixed

strategies and find game values for both sclar and vector
controls. Herrelko(27) later extended these results to
cover the case with information time lag.

Although many questions still remained unanswered for

two-person zero-sum dynamic games with perfect information

and pure strategies, many researchers have wandered into
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the area of other games. One reason for this is because
the early works were not applicable to many real-world
problems which are often n-person, non-zero sum and
stoachastic. Each of these areas is a challenge in itself
and most of the efforts to date have been rightly concen-
trated on each area individually.

Analytical success with the linear-quadratic problem
has induced many authors to explore stochastic games. Most
of the works in this area have been on two person-zero sum
linear-quadratic games with noisy transitions of dynamics,
random initial conditions, or moisy observations. According
to Bryson and Ho(27) the main effort has been to relate
solutions of these problems to the "certainty-equivalence"
principle of stochastic optimal control theory. This, how-
ever, contain a logical fallacy in the treatment either
implicitly or explicitly of one player's control in his
opponent’'s estimator. Some of the contributors in the area
of stochastic differential games are Ho, Speyer, Behn and
Ho, Rhodes and Luenberger,- Willman, Mons, Bley, etc.

To conclude this very brief overview of the historical
aspects of differential games, it might be worthwhile to
mention that successful researchers have shown respect for
this quite new field, and realize that the complications
involved is far more than an extension of optimal control.
Progress is made in careful steps and examples are kept

simple so that the new concepts being uncovered can be made

Clear.
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1.2 Differential Game Structure

In this section, an informal presentation of a very
general type of differential game, where there are any
number of players with different cost criteria and different
information sets will be given. With this structure, some
general classifications of differential game will be made.
Figure 1 illustrates basic structures of a gerneral differen-
tial game. The interval of play is assumed to be [o,T]
where T may be a fixed final time or the time when the
state trajectory first reach a given terminal manifold.

At each instantanous time t in the interval [o,T],
each player from the total number of N players chooses a
vector of control inputs, u, ., to optimize his cost criteria:

Li(x,u ,...,uN;t)dt (1.7)

_ T
3 (uy,eeeput) = Fu(x(T),T) + J’ 1

o
i= 112100501 N
These controls serves as input vectors to a common dynamic

system(shared by all players) described by a nonlinear vector

differential equation:

x = f(x,uy, .....,uN,t,w(t))
x(0) = %o (1.8)

Where w(t) is a vector input of random noise usually

-
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Figure 1. Structure of a general differential game
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Gaussian.

Generally some contraints ug € th.where

Ui = [uiz g(ul,...,%q-t) < 0] (1.9)

or a set of wvector contraint equations is also imposed on
the choice of control vectors u;'s.

At each particular time t, each player also has a set
of measurements or information sets available to aid his
decision in choosing the control vector These information
sets are accumuiated by each player during the interval

[0,t] in the form

y; = hi(t,x('r),vi(d.')) for all 4 € [0,t] (1.10)

where uier) is the noise vector input to each of the player

measurement system.

To date, most differential games are formulated in two

special cases as follow:
(1) hi(t,x('r'),vi('r) = x(7) for 0&£™gt
where we have a deterministic system or perfect meas-

urements of the state vector if all information is

used, the solution is in closed-loop form.

11
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x
O for t = 0

(2) hi(t.x(T).vief) - o for t > 0

then only the initial state vector is known the system
is still deterministic, but in this case the solution
can only be generated in open-loop form. It is inter-
esting to note here that even if perfect measurements
are available, the controller may still not be able

to generate a closed-loop solution depending on the

relative sizes of the computation time and the duration
of the game. There are only a few simple cases Qamely
with linear dynamics and quadratic pay-offs where
closed-loop solution'can be generated in closed-form.
Other more difficult cases which recently have drawn

interests from researchers are:
(3) By (6,%(M),v; (M) = H(Mx(T + v (M

for 0 € g t

where Hi(40 may be either time-invariant or time-variant
matrix. . vi(¢0 is additive white Gaussian noise. 1In

this case we have stochastic differential game with

linear measurements. Again only linear-quadratic dif-
ferential games have been solved with this information

set.

12




X for £ =0

4 h: (t£,x(?) ,v; () =

(4) (£, x(T) vy ( .{0 for t > 0
where x is a random-variable usually Gaussian. Here,
we also have a stochastic game. A non-linear version
of pursuit-evasion differential game with this set of

information will be presented later-on in this report.
(5) hi(t,x(’r),vi('r) = x(T) for 0 £ * £ t- &

here we have perfect measurements with time delay.

Only a handful of papers about differential games were

generated on this set of information. All the authors

limited themselves to simple problems in this case
because of the tremendous complexities involved.

Once the measurement is made and one of the information
set from those listed above is formed, a control law can
then be generated. 'In deterministic cases, control laws
are generated directly either from analytical or numerical
solutions. In linear quadratic stochastic cases, it is well
known that the"Certainty .Equivalence Principle" or the
"Separation Theorem" can be extended from the theory of
stochastic optimal control. That is, the estimation process
can be carried out first using some type of filter, the most
well known being Kalman Bucy's, then the estimated states

can be used to generate a control law as if they were

13
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S deterministic.

Furthur classification of differential game can be
N

made from the cost functions. 1If fEi J, = 0 then the
= i

game is called the N -person Zero sum differential game

If fgl Ji % 0 then it is called N-person non-zero sum

differential game. One important class is the two-person

- zero-sum differential game. This is the class of differ-
ential game that we shall be concerned with throughout this
dissertation. An exact formulation of two-person zero-sum

differential game will be given in the next section.

1.3 Differential Game Formulation

From hereon in this report, we shall be concérned with
two-person zero-sum differential games, whose formulation
is given as follows:
' There are two opposing players U and V who choose their
control strategies to drive the equation of motion of the

dynamic system:

x(t) = £[x(t),ult),v(t),t]; x(0) = xqo (1.11)

[}
dt
where
) x(t) = state vactor of dimension n x 1
u(t) = control input of the minimizing player}
dimension m x 1
v(t) = control input of maximizing player,

dimension p x 1

14
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i The duration of play [(0,T] is fixed, the terminal time
3 T is given explicitly in the problem. The vector function

- £ is assumed piecewise continuous during the interval of
play, and differentiable up to any order required in all its
arguments.

The vector control functions u(t) and v(t) are piecewise

continuous, differentiable function of time, and belong to

some prescribed . feasibility regions u(t) e U and v(t) €V

where
u = [u: g,(x,u,t) < 0] (1.12)
vV o= I¥: g, (x,v.t) £ 0] (1.13)

4, and g, are vector state and control contraints,
dimension £ m and p respectively
U is minimizing and V is maximiaing the following scalar

cost functional:
T

J(u,v) = F(x(T)) + ‘f L(x(t) ,u(t), v(t),t)dt (1.14)
0

The scalar functions F and L are also continuous and
differentiable up to any order required in their arguments.

The feasible regions U and V generally preclude the
use of infinite controls by either player. They usually .im-

pose hard limits on the control vectors. Equation (1.11)

15
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implies that both players agree on the dynamic structure of
the system. In reality this is always an approximation.

The practicability of the solution then depends on how close

one can model (1.1ll1l) to represent the real system. This is
not surprising, however, since in all mathematical modelling
of real physical problem, some simplified assumptions gen-

erally have to be made to ensure mathematical and computa-

tional tractability of the model of the problem.
Note that generally the terminal time T does not have
Ei to be given explicitly. 1Instead a terminal manifold of the

Igj form ¥ (x(T),T) = 0 can be described. This, however, can-

E; not ensure the termination of the game. Therefore, the fixed

&y
Y
v

duration game which can be considered as a special case of
terminal manifold whereig(x(T),T) = T-tf = 0 is chosen here
to eliminate any termination problem that may arises in -
order that other important concepts can be investigated and
clarified.

It is also interesting to note that if hard limits are

not imposed on the controls in (1.12) and (1.13), then

additional assumptions will have to be made on the controls

to ensure that the magnitude of the optimizing controls will
d(lB)

N R
LY TNV

. be finite. This is done in McFarlan . Briefly, he

defines regions of finite controls cV and cY such that when-

ORI U

ey . . >
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ever U try to use infinite control in minimizing then V can
choose v(t) € CV to drive the cost functional very large.

Similarly, whenever V try to use infinite control in

16




« maximizing, then U can choose u(t) € C" to obtain very small
value for the cost functional. These assumptions are not

required in this report.

1.4 Objective and Scope of Dissertation

As mentioned before on the opening statements of this
chapter, an efficient algorithm is needed before a solution
of pursuit and evasion differential game can be implemented
effectively. Most of the results of the computational
methods developed so far have been found under the assump-~

tion that the saddle point exists. A discussion of this

point and a counter example will be presented in the next
chapter. McFarland(la)worked out an algorithm without
assuming existence of a saddle point. He uses Differential
Dynamic Programming from the work of Jacobson an Mayne(3°)
for inner optimization and gradient method for outer opti-
mization. McFarland results, however, does not contain any
hard limit on any control or state constraint as in (1.12)
and (1.13). Our work then will be as follow:

1.4.1. Using an approach similar to McFarland's, .an

algorithm will be developed to handle hard limits on control

and state variables of differential games. The Differential

Dynamic Programming used in the inner optimizations will be
modified to handle the constraints. Some gradient projection

schemes will have to be used to cope with the outer optimi-

zation. This will be presented in chapter 2.
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1.4.2 A linear quadratic pursuit and evasion

differential game will be investigated. The case without

any control constraint will be solved analytically. Through
a simple illustrative example, physical outcomes correspond-
ing to parameters of the problem will be investigated. The
case with control constraint cannot be solved analytically.
Two numerical solutions will be offered, one using the
algorithm developed in 1.4.1 and another using an indirect
approach with the assumption of existence of the saddle
point and direct application of differential Dynamic Pro-

(31)

gramming similar to the algorithm used by Neeland and

later by Jarmark(32)'(33)'(34).

Any similarity or discrepancy, advantage and disadvantage
between the two methods will be reported. Chapter 3 will
cover this.

1.4.3 Chapter 4 will cover a stochastic nonlinear
model for a missle-anti missle intercept problem. A mathe-
matical model will be developed using a set of sufficient
statistics as state variables. The problem will then be
solved using the algorithm developed in chapter 2.

1.4.4 Chapter 5 will summarized all the results

accumulated in this report. Recommendations for future

research will be presented.
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CHAPTER 2

DEVELOPMENT OF NUMERICAL ALGODRITHM

It is widely accepted that for a general differential
game, a numerical solution is generally needed. In such
case, therefore, only open-loops form of solution can be
generated. However, if numerical algorithm can be developed
with such simplicity that the total computation and imple-
mentation time is much less than the duration of the game,
the process can be repeated with either the determined or
the approximated new states treated as initial states
depending upon whether the problem is deterministic or
stochastic. In this manner, a closed-loop solution can be
approached as a limit as the computation and implementation
times get smaller and smaller.

On the other hand, one must be careful that in trying
to simplify the problem, assumptions are not made that per-
tinent physical realizations must be sacrified. Thus the
control engineer must strife to seek the delicate balance
between these two points. This is an optimization problem
in itself. The solutions which will be presented in this
report will not be claimed as optimal in this sense but they
will be developed with these two points in mind.

Before we actually start off with the development of
the numerical algorithm, it would seem appropriate to

discuss the meaning of the solution of differential game

19




to get a clear picture of what we are looking for. The state
of the art on numerical solution can then be surveyed to

pave our way towards the solution. The actual algorithm will

be composed of two parts: the inner optimization using
Differential Dynamic Programming with state and control
constraints, and the outer optimizatiqn using gradient pro-~
jection. Finally, we shall conclude this chapter with the

details of the steps of the algorithm.

2.1 Differential Game Solution

In game theory, the solution for each player is the
choice of the strategy that he has to choose among many
possible ones. 1In choosing his strategy, a player cannou
be sure about the outcome of the game because he does not
have any "a priori" knowledge about his opponent's choice.
This is the fact that caused more complications in the
theory of differential games than juét being simply an ex-
tension of optimal control theory.

In two person zero-sum differential game, the players
are two adversaries confrohting one another with one's loss
being the other's gain. Therefore, each player will try to

minimize the maximal loss his opponent can caused. The

strategy that realizes this outcome becomes his solution.
Once the solution is found, the player does not care what
strategy his opponent will use. He is that much better off
if his opponent does not use the strategy that caused him

the maximal loss. it is for this reason that some authors

20
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have called this type of solution the security level of the

game.
In the following discussion, let us designate the two

opponents as follows:

minimizing player = U, using control u(t)

maximizing player = V, using control = v(t)

t is any instant between the interval [0,T]

the cost functional of the game, J(u,v) is in the form
of equation (1.14)

First, let us look at the minimizing player's, U,

point of view. For any arbitrary control u(t) that he

chooses, he is assured that at maximal the cost will be

J(g,ﬁ) = max J(u,v) (2.1)
v(t)

Naturally, U will choose the control ﬁ(t) which will mini-

mize the maximum cost

J(1,v) = min [(max J(u,Vv)] (2.2)
u(t) Y(t)

Thus, the solution for U is the so called minnimax solution,
A ) A
u(t). Note that U does not care whether V will use v(t) or

not because from equation (2.2) we can see that

JW,v) € J(@,v) for v # ¥ (2.3)

21
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The equality in equation (2.3) is included because of the

A
possibility of the non-uniqueness of v. Therefore, U will

A
usually gain if V uses any other control besides v.
Now, from V's point of view, for any arbitary control

v(t)

J(T,v) = min J(u,v) (2.4)
u(t)
V is assured that his cost will be at least J(u,v). Since
his objective is to maximize, V will choose'z(t) that will
maximize this minimum cost

o~

J(U,P = max [(min J(u,v)] (2.5)
v(t) wu(t)
Thus, § is the max min solution for V. Again V does not
care if U uses E or not. From (2.5) it is clear that V
will almost always gain and at least will not loose if U

o~
uses any other control than u because

(2.6)

141

J(u,¥) > J(@,V) for u #
A o~
The net cost of the game is J(u,v). Generally, we can state

that each player will usually benefit from using the secure

strategies as depicted in the following equation

~ o~ A~ A A
J(u,v) £ Jyv) £ J(uy) (2.7)

22
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From a general viewpoint, there is absolutely no reason to
presume that

~ A

u and v = (2.8)

1<

A
u
A ~
If (2.8) is true, however, u and v will constitue a saddle
A~
point for the game,and the net cost, J(u,v), is called the
value of the game.

Definition 1:. The differential game described in section

l.3 is said to have a value if

Min [Max J(u,v)] Max Min J(u,v)] (2.9)
u(t)  v(t) vit) u(y)y —~

where u ranges over U and v ranges over V.

Definition 2: If a game has the value J*, and if there

*
exists (u,v*) such that J* = J(u,v*) and

Jiv) ¢ Jwh v <€ Jwy) (2.10)

* *
then u is optimal for U and v is optimal for V.
* *
The pair (E*r! ) is called a saddle point. u and X*are

called pure strateqgy solution.

Most of the previous works on differential game have
been concentrated on pure strategy solution, and the condi-
tions for which it exists. However, for a general nonlinear

nonquadratic problem a saddle point does not generally exist.
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Two examples will be shown here to demonstrate this point.

q¢18)

The first one is dued to McFarlan concerning a single

The second one is dued to Berkovitz(35)

stage static game.
concerning differential game with nonlinear dynamic.
Let the controls be scalars u and v and the cost

Example 1:

be the polynomial function of u.and v as follows:

Ju,v) = (wh-2u2+2) (-vd 4+ v2 4 2 + (u3-3u) (v3-2v)  (2.11)

18 18 18 9
The cost function is formed in such a way that neither U nor
V can use infinite control in their optimization process.
Using previous terminology cV = [v: lvi< 2] and cY = [u:ue€R]
The solutions to

where R is any number on the real line.

this problem are:

A A
For player U, Minmax: u = + 1, (v=+ 1)
A
J(u,v) = 1
For player V, Maxmin: v = 0, (u= +1)
JU,v) = 2
3

A~
J(u,v)

Net cost of the game: 2
3

It is interesting to note that McFarland called the points

24
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(+1,+1) and (-1,-1) local saddle points. Ihese points,
however, are not saddle points according to the definition
given above. Using definition 2, it is obvious that the
saddle point does not exist in this problem. This differ-
ence accurred because McFarland defined a saddle point as
the point where the gradients of the cost with respect to
controls simultaneously vanish accompanied by some simple
second order condition. In this report, the name saddle
point will be preserved for such point when the control
pairs of the minmax and the maxmin solutions are the same
and pure strategy exists. McFarland also worked out the
solutions of this example in details which will not be re-
peated here.

Example 2: For a game of fixed final time T > 0, play ter-
minates at t = T. The cost function being minimized by U

and maximized by V is given by

Jlu,v) = ‘fT xdt (2.12)
| 0

The state x is determined by the dynamic equation and the

initial condition

x = (v-w? =x(0 = x_ (2.15)

The controls are constrained by u = U(t,x), where U is

piecewise continuous differentiable on the interval [0,T]

25




and 0 & U(t,x) & 1, and v = V(t,x), where V is also piece-
wise continuous differentiable on the interval [0,T] and
0 £ Vit,x) £ 1.

Maxmin Solution:

For any arbitrary control chosen by V, U can choose the same
strategy and thus cuarantee that

X = 0 on the whole interval (0,T]

Therefore, mgx m.ti.ln J(u,v) £ xoT

For any pair (u,v), however, it is obvious that x > 0.

Thus,

o

J(u,v) = fT xdt » x T
0

Therefore, max min J{(u,v) = xT (2.14)
v u o

Minmax Solution:

For any arbitrary control chosen by U, V can practically
guarantee that x 2> 1/4 on [0,T] by choosing his strategy as

follows:

v =

{l if u £ 1/2
0 if u > 1/2

using this strategy V can make x(t) > xo + t
2 4 .
Hence, min max J(u,v) > xoT + T (2.15)
u v
Now, if U choose u = 1/2 V[O,T], then for any v,

;c £ 1/4 on [0,T].

26
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Thus, upon integrating we have

min max J(u,v) & xT + T2 (2.16)
u v o ]
From (2.15) and(2.]16) we can conclude that
min max J(u,v) = x T + T2 (2.17)
u v o E)
In summary, we have J(U,V) = xT
A A 2
J(u,v) = x,T + T

Therefore, for this problem

JEH <. IWW
Again, a saddle point does not exist in this game, and the
game does not have a value in pure strategies.

From these examples, we see that even for simple games
(the first is a static game and the second even though has
nonlinear dynamic contain linear cost) saddle point does not
have to exist. Sufficiency conditions for saddle points
were worked out by many authors, but they are restricted to
a very limited class of differential game.

One question arises on what then is the true solution
of differential game in the case where a saddle point does
not exist. The celebrated Minimax Principle of game
theory asserts that in this case the players can find fixed

probability laws from which random strategy (among those

27




possible) can be selected in such a way that the average
value of the cost sustained by each player comprises the
value of the game in the long run. The probability laws

that have to be found is contained in the mixed-strategy

solution. The main disadvantage for this type of solution
is that it is not only hard to implement but also exceedindgly
complicated if not impossible to solve for in a realistic

Ei : pursuit-evasion differential game. All the researchers

3 who worked on mixed-strategy had to resort to very simple

problems which bear little or no physical significance.

At the present, we should be contented with the

security level type of solution. The minmax and the maxmin

solutions provide the least-maximum-loss strategy for each
player. If the player can accept the cost accrued from
using his. least-maximum-loss strategy, then he can rest
assured that he will not be worse off no matter what strate-
gy his oppenent will use. One critical argdment against
this type of solution is that it is too éonservative.
However, in view of the fact that numerical solutions are
needed for all realistic pursuit-evasion differential games,
all the strategies implgmented will be suboptimal to some

extent. The less complicated the solution can be the closer

it will be to a trueoptimal. In addition to the computation
and the implementation time involved, this should more than
outweighed any advantage that could be gained by using the

mixed-strategy solution. This report then will be aimed at
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finding an efficient algorithm to solve for the least-maxi-
mum-loss strategies or the minmax and the maxnim solutions

without the assumption of existence of a saddle-point.

2.2 The State of the Art on Numerical Solution

As mentioned before in section 1.1, Berkovitélo)used
calculus of variation approach to form a set of equations
for two person zero-sum differential game. Blaquierézz)
also has a similar development but the emphasis there is
put in the geometric aspect of the game. These works have
become the basic fundamentals for most numerical methods
developed thereafter. Most authors require the assumption
of the existence of a saddle-point to provide the pure-
strategy solution. The main feature for these technigues
is having to solve a two-point boundary value problem (TPB
VP). This type of problem is encountered very frequently
in optimal control theory and in mathematics, they involved
a set of differential equations with initial conditions
given on some variables and final conditions given on the
rest. Since the optimization process using this approach

does not involve evaluation of the cost function directly

in each iteration, it has been labeled the indirect methods.

(28)

Bryson and Ho suggested that numerical methods for TPE_
VP can be cagegorized into three methods: gradients,
quasilinearization (Newton-Raphson), and neighbouring ex-
tremal.

Recently, Jacobson andAMayne(3°) has added a very

29
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efficient new technique to solve the optimal control problem
using Differential Dynamic Programming (DDP). This method
differs to the above indirect methods in that rather than
having to solve the TPBVP, a set of associated equations

are derived with all the final values given. The task of
integrating backward is much simpler than the task of solv-
ing the TPBVP. Moreover, the convergence time of DDP is
generally found to be more rapid than any of the three
methods mentioned above.

All three indirect methods mentioned have some common
features. Each method start off with some nominal solution
for which some boundary conditions are satisfied, and each
use informations provided by a linearized solution about
the nominal solution to improve the solution for successive
iteration until all the boundary conditions are satisfied.
The rate of convergence differs greatly as they are applied
to various problems. Generally, the gradient method exhibits
a fast convergence to start off but becomes relatively poor
near the optimal. Some phenomenal such as zig-~zagging has
been known to be closely associated with this method near
the optimal value. Newton-Raphson or quasilinearization
converges quadratically near optimal but the initial gquess
must be chosen very carefully. Tb this end neighbouring
extremal is generally even more sensitive to the initial
guess.

All gradients methods exhibit one common difficulty

namely the so called "step-size" problem. That is, after
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a feasible direction is found using the gradient, how far
should the control correction be applied iﬁ that direction.
Too small a step-size will cause a drastic decrease in
convergence rate whereas too big a step-size sometimes leads
to non-convergence. There are two basic techniques to take
care of this problem. The first one was devised by Jacobson
an Mayne(30) ang ysea effectively by McFarland ‘1®) in his
dissertation. This has to do with adjusting the time inter-
val [#,T] on which the new control is found in such a way
that the variation of the states is not too large. The
second technique was introduced by Jarmark (32),(33),(34)
where the quadratic terms of the controls are added to the
integral terms of the cost functional and the weighting
matrices are chosen in such a way that again the variation

in the states is acceptable. Both techniques have exhibited
very good convergence property.

Leffler (36) developed theortically a numerical algorithm
containing two phases. The first is called the "gradient"
phase in which the directions of the control changes are
computed, and the second is called the "restoration" phase
which is needed to keep the new control within the feasible
region. Theoretically, Leffler's alqgorithm is capable of
handling constraints on both states and controls. Computa-
tionally, however, the pursuit-evasion problem that he solved

does not include any significant constrainton either the

states or control inputs of each players.
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On the application aspects, Robert and Montgomery(37)
attempted to solve a classical pursuit-evasion problem. The
g{ distance between the two aircrafts at the time of closest
approach was used as the cost index. They were successful
in obtaining the optimal trajectories for most initial con-
ditions. They also found some regions where the trajectories
are not unique and remedied the situation by adding the time
until interception term into the cost function. The dynamics
were non-linear and the controls were subjected to hard con-
jﬁ straints. The computation time required, however, was very
large. Approximately the computation time was ten times as
great as the engagement time in their report.
{: The most complex air~to-air combat model so far docu-
mented was worked out by Lynch(38), The emphasis was to form-
ulate and solve as realistic a mathematical model of air-to-
air combat as possible. A three dimensional model was used.
:i All the involved factors were considered. Thrust, drag, and
lift were stored as a monlinear function of altitude and
- airspeed. The controls were roll-angle, thrust, and turn
rate with the latter two subjected to hard constraints. The
cost index used is the time required for the pussuer to
manuver closer to the evader than some given radius. Again
; Lynch used the gradient method with the same step-size
adjustments as Robert and Montgomery to obtain satisfactory
convergence for most initial conditions. He also reported
'i on singular surfaces where non-unique solutions were

encountered. Needless to say the computional time needed
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- were horrendous. Rougnly the requirement for the computa-

; [ tional time is one hundred times in magnitude as compared

!? to the simulated encounter time.

;i Leatham(3?) 2150 studied the same model mentioned above
:E using the method of "neighbouring optimal trajectories".

hl This method is closely associated to the "successive sweep*

method of Dyer and McReynolds.(4°) The details will not be

described here, interest readers can refer to the above
references. It might be worthwhile to mention, however,
that even if the missing initial conditions can be accurately

guessed, the computational time for this method took roughly

57 IS SRR

twenty times greater than the time of engagement. Dethlef-

41
sen( )performed an analytical analysis of neighbouring

optimal method for a much simpler problem. No numerical
result, however, was included in that report.

(42)

Graham entended the quasilinearzation technique of

optimal control to cover the first -order necessary conditions
he derived for differential game. The technique was then
used to solve a pursuit-evasion game involving a ground-to-
air intercepter and a supersonic airplane essentially the
same unconstrained problem solved by Leffler. This method
is very sensitive to the choice of the initial trajectory.
The magnitude of the computational time is approximately ten
times that of the encountered time.

Neeland(31l) ,ged pifferential Dynamic Programming (DDP)

to develop algorithm to solve a realistic air-to-air combat
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3 game under the assumption that the saddle point exists.

| Even though the development of the algorithm contains'the

t! term up to second-order. The actual algorithm used to solve
the pursuit-evasion problem is actually a first order
algorithm which is practically required because he was look-
ing for a very fast computation time. He actually reduced
the computational time to be smaller than the engagement

time in the non-sigular case. Jarmark also confirmed this

o 'Tz."r.—vvrp'.,, P —
‘ . P ot -'.'4.'.' ':'.

for a large number of sample problems. Therefore, we must
conclude that of all the techniques available so far, Dif-
ferential Dynamic Programming is the most efficient one.

Details development of the first order algorithm of DDP will

be included in the next section.

All the methods discussed so far have been under the

L~

assumption of existence of a saddle point. Reports with no

a-priori assumption of a saddle point have been rare indeed.

McFarland worked out one such report. Besidas having no

4 ANt I
P [ [ N

assumption of a saddle point, his technique differs from
[ the indirect method in that the evaluation of the cost
. function is required in each iteration. Therefore, McFar-

F land's technique is sometime referred to as a direct method

- or a direct solution technique. Briefly for an arbitrary

control the inner optimization of this method is performed

ki )
Ik B S
.

by using second order DDP to locate all the local maxima

(minima) created by the opponent's control. The player's

control is then adjusted by using either the "steepest decent”
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or the "conjucate gradient" methods. This adjustment is
called the outer-optimization. The process is then
reiterated. Since McFarland does not consider any control

or state constraint, the termination criteria occurs when

the variation of the Hamiltonian with respect to the player's
control is negligible in which case a saddle point is located

or when a cross-over point is located in which case the

solution will not be a saddle-point. The exact definition

of a cross-over point will be given in the following section.

2.3 Differential Dynamic Programming with State and Control

Constraints

We shall start our development with the inner optimiza-
tion process. Even though the actual derivation is for a
maximin solution, it can also be applied to a minmax solution
simply by the substitution of control variables and the inter-
change between the minimization and the maximization within
the procedure.

2.3.1. Derivation of DDP with State and Control Con-

straints
For a maxmin solution, with any arbitrary control v(t)
chosen by V, the differential game formulated in section
1.3 becomes a constrained optimal control problem as follows:
Player U now chooses his control strategy to drive the

equation of motion of the dynamic system:.
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a x(t) = £(x(t),u(t),t); x(0) = x (2.18)
dt - °
t € [0,T] = ©, T is fixed

x(t) € X an n dimensional Euclidean space

u(t) € U

U= [u: 8+R", g(x,u,t) £ 0] (2.19)
where R™ is an m dimensional Euclidean space, the
mapping is bounded by the constraints vector hyperplane
g(x,u,t) £ 0 of dimension < m

U is trying to minimize the following cost function
J(u(t)) = r L(x,u,t)dt + F(x(T),T) (2.20)
o

Since the starting time is arbitrary, we can rewrite

this cost function using the imbedding principle

J(x(t),t,u(™) = Fx(T),T) + J: L(x(T),u,(?,Ma7r (2.21)

*

J ()_(_(t) rt)

We then define

min J(x(t),t,u(r))
u(m

T
u (™) t

By using the well known principle of optimality in optimal
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control theory (2.22) can be rewritten as follows:

* t+at T

J (x(t),t) = min [F(x(T),T) + I L dfr’+‘f L 47 (2.23)
u(r) t t+at

the arguments of the functionals L in (2.23) is the same

as those in equation (2.22). Combining the first and last

term in the bracket and using the above definition we have

* * t:"' 4£’I t

J (x(t),t) = min [J (x(t+ At),t+ At)+I L dv] (2.24)
u t

Expand J* (x(t+ At) ,t+ At) in Taylor's series about (x(t),t)

for small At,

0= min [3J.at+3dJ. £(x(t),u(t),t) . pAt+L(x(t),u(t),t)

— o——

u(t) t Y

H]

-at + o (Aat)] (2.25)

where o(at) —e 0 as t -0
At

Dividing (2.25) throﬁghout by At and let At approaches zero,

we have

* *T
8J + min [L(x(t),u(t),t) + 3J .

£(x(t),u(t),t)] = 0 (2.26)
E u(y) ) .

1%

the partial derivatives are evaluated at the point (x(t),t)
This is the well known Bellman's equation in the optimal

control theory and serves as a starting point for DDP. Define
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the Hamiltonian as

T

H(X,u, J,t) = Lix,u,t) + 37 . £(x,u,t) (2.27)
* *

where J = 33 = (& 3" 23" ... dJ ]T (2.27)
x X s | X, Xn

the superscript T stands for transpose. (2.26) then becomes

* * *
J(x (t),t) + min H(x (t),u(t), 3 ,t) = 0 (2.28)
t - - - X
u(t) x
Since we are dealing with the state and control constraints,
a penalty term can be incorporated into the cost functional
as follows
T T
J(x(t) ,ult) &) = F(x(T),T) + j' [L(x,u,€) + rg(x,u,t) at
o)
(2.29)

With constraints then Bellman equation becomes

LA ) ' * * T
I (%, (£),t) + min [H(x (t),ult), J,t) + ¢ .g(x(t),u(t)]

uev =
(2.30)

where A4 is the Lagrange multiplier vector and can be sulved
for by ﬁsing the Khun-Tucker condition from non-linear
programming. This is included in the appendix A.

For now, it suffices to say that, the vector multiplier
function, £&(x,u,t) is identically equal to zero when the

corresponding constraint is a strict inequality. Otherwise.
M =-[gu.gu].gu.nu (2.31)
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where ~ designates the boundary in U or when the constraint
is a strict equality.

It is a well known fact that except for a few simple
cases, Bellman equation cannot be solved analytically. DDP
provides an excellent iteration procedure for numerical
solutions. We now proceed to derive pertinent equations
required for DDP.

Considered equation (2.30), if there exists a nonimal
x such that 3:_*(1:) = x(t) + ax(t) whereax(t) is small in the

interval [0,T] then

*
J (X + Ax,t) + min [H(x + Ax s t)
uey 5

+/_61-_T(2+ ax,u,t) . g(X+ ax,u,t)] = 0 (2.32)

Expand (2.32) in Taylor's series to first order in A x about
X and using the so called complimentary slackness in the

Khun-Tucker condition we get

*T —- . -— *
3 3" (X,t) + © J, (X,t) .4x + min [H(X,u,J ,t)
2t at = ueu X
T % * - T
+ H (X,u,3, ,t).8x + (3 . £(x,u,t)) .ax
= = xx
+&T_§_2 gxg .Ax + h.o.t. = 0 (2.33)

h.o.t. stands for higher order terms in the Taylor's series

expansion.
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f'.'jii' If Ax is very small, as A X approaches zero, the higher

' order terms also tend towards zero, and we can split (2.33)

into two parts as follows

* _ *  *
® J (x,t) + H(X,u ,J ,t) = 0 (2.34a)
at X
LA . * * * - %
2 J (x,t) + H (x,u ,J,t) +J . f(x,u,t)
at x z = .23
*
T — & —_
+g (x,u,t). uX,u,t) = 0 (2.34b)
X
* -1 * *
where u = min H(X,u,J ,T) or in words u is the feasible
u€u X

control with which the Hamiltonian is minimized.
: * : x :
Since J (X(t),t) and Jx(g,(t),t) are functions of X(t)

and t, the total derivatives with respect to t are

* _ T
d J (X,t) = J*X,t)+J (X,t).£(x,5,t) (2.35a)
dt at X x - = =r= .

* * * _
d J(x,t) =9 J (x,t) +J (x,t).£(X,u,t) (2.35b)
dt x at x XX

We now define an estimates cost change at time t as

a(t) = J (£,t) - F(E,¢) (2.36)

where E(E,t) is the nominal cost that occured when U is using

the control strategy u(t). Note that

J(X,t) = -L(X,5,t) (2.37)
t

. Qs
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Substituting (2.35a) and (2.37) into the total time deriva-

tive of definition (2.36) we have

. %* *
a(t) = 7 (x,t) + J_(X,t).£(X,3,t) + L(X,3,¢) (2.38)
2t x

Notice that the last two terms on the right hand side of
(2.38) is the definition of a Hamiltonian. Using (2.34a)

*
for & J (x,t) then (2.38) becomes
ot

* — * —_ - *
-a(t) = H(X,u;J ,t) - H(XT,J_ t) (2.39)

Substituting (2.34b) into the negative of (2.35b) we obtain

t) - g(g:_{l__:t)] (2.40)

R * - -
t) - f(x,u,t)] == J .£f (x,u,t) .au (2.41)
XX - == XX “4 =~ =

Expand the dynamic equation (2.18) about X,u to the first
order, we get a differential equation describing an approxi-

mation of the deviation in x as follows

(X,u,t) . au

[o 1
>
®
]
jrn
1%
1]

t).ax + £
TR T (2.42)
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ax(0) =0 (2.42)

Throughout the derivation process, we are depending on the

. T e
ey e

assumption that AX is small. Therefore, (2.42) can be

used to show that _f_u(_:__c_,:ﬁ'_,t) .Au will also be small for small

A AR
LRSI A

A X. This suggests that the term (2.41) can be neglected.

*
Neglecting the Jxx terms in (2.40) introduces an error

* *
AJ (t) in J (t) of order
X X

—-—

3
¥
L
P
2
b

t *
IT Ju (t3) - uw(t))| dt (2.43)

The integration is performed backward because the final
conditions of differzntial equations (2.40) and (2.41) are

given as we shall see later. We define

m

laul = > Iy

i=1

The error Aa(t) in a(t) is of order

HellhEA

v "
S L SRR

t ot * - * —
. u (t,) - u(tq)] dt,ju (t ) - u(t .4
2 Ju (tp) - 8y 1|8 (£)) = Bley)]de  (2.44)
T Jr

From equation (2.39) it is clear that a(t) is of order

- ¢ 0
0

13 A i

5 £ 3 (2.45

2 . | (t,) - T(ty)| dt, .45)
Z From (2.44) and (2.45), we can see that if either T - t is of
o

o

h.o
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order £ or |P.*‘ u| is of order € , then the error Aaf(t)
is of order € while a(t) itself is of order € - Thus,
we have shown that by neglecting the term (2.41), a(t) will
still be correct to the first order.

At t=1; J (X(T),T) = F(X (T),T) (2.46)
hence we have the following final conditions

a(T) = 0 (2.47)

*
IEM,T = FED,D (2.48)

In summary, the equations that constitue the heart of
DDP in the case where the state and the control constraints

are present are

* — * - _
* _ -— x * T - * _ * .
_J§(§rt) = HK(E'E'JK't) + gk(i,g,t) ./éiji,E,T); (2.49)

. _
J (x(T),T) = F (x,(T),T)
X = X =

2.3.2 DDP Computational Procedure

(1) Use a nominal control u(t), integrate (2.18) for-
ward to obtain a nominal trajectory g(t): Store x(t),u(t)
together with the computed cost J(x,t) from (2.20).

(2) Integrate (2.49) backward from T to 0 while

- *
simultaneously minimizing H(X,u,J,,t) with respect to u(t)
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& U to get Btt)- Store E*(t) and a(t).

(3) Again integrate (2.18) forward using gf(t) and
also compute J*(Ett). If the actual cost change agrees
with the predicted cost change computed in (2) then gf(t)
can be accepted as a new nominal control.

(4) 1If |a(0)| < €& where € is some small positive
number, then g*(t) is regarded as optimal control. If not
then steps (1),(2) and (3) are reiterated.

(5) If the actual cost change differs too much from

the predicted cost change, then the "step~size" method can

be applied.

2.3.3 Step~-Size Adjustment

Substituting the minimizing control in each iteration,
*
u (t) into (2.18), we obtain

*
(x +ax) = £(x +ax,u ,t); x(0)+4x(0) = x  (2.50)

Because A x(0) = 0, the size of ax(t) is dued to the varia-
tion in control Au = g*-. u as can be seen from equation
(2.50). One way to restrict the size of x(t) is to
restrict the interval of time over which (2.50) is inte-
grated. This is desirable since we do not wish to alter
the size of g*(t) found in the minimization process of
H(Z,E.J;,T) in step (2) of the algorithm. .

Thrghghout the derivation process of the DDP equation

(2.49), we were under the assumption that 4x is small.
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This is an important assumption, because if Ax is not small
enough, then the higher order terms in (2.33) will not be
negligible. This in turn caused the actual cost change,
AJ, to deviate too much from the predicted cost change, a.
Let 0 ¢ tI £ T, use nominal control u(t) from

0 & t £ t;, then x(t;)= X(t;) and*Agc_(t)=0 from 0 gt g t;.
Now, use the minimization control u (t) to integrate (2.50)
forward from tI to T. 1If [tI,T] is small, then x will be

small for finite u. Note that

X

- I _ % % - %
a(x,tI) = [H(x,u,TJ ,t) - H{x,u,J_,t)]1dt (2.57)

One criteria to determine whether the actual cost change

"agrees" with the predicted cost change is as follow:

a3 __ > c; c > o (2.52)
a(x,t;)
There is no strict rule to govern the size of C. It is up
to the judgement of the control engineer to decide what
positive number he should use for C for his particular
problem. Usually C is set around 0.5. It might be noted
that C should be less than 1 since the actual cost change
should not exeed the predicted cost change. This, however,
could happen.
If (2.52) is satisfied, then AXx is small enough, and

the iteration process is repeated using the minimizing
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control as a new nominal control in the interval [tI,T].
Usually t; is originally set at 0. If (2.52) is not
satisfied, then set tI = % and repeat. If the criteria
is still not satisfied using th? new tI, then use t; =

T-ty + tI as the new starting point of the interval for
2

integration. The process is repeated until the criteria

is satisfied. Figure 2 is used to illustrate this scheme.

Figure 2. Half interval scheme to control the size of Ax

Following are a few characteristics of the "step size
adjustment”:

(1) The new nominal trajectory may have a corner at tI
because u(t;) may be different from g*(yl): ‘The integration
routine used, therefore, must be capable of handling
differential equations with discontinuous controls.

(2) If the minimizing trajectory coincides with the
nominal trajectory during the latter portion of the interval
but the nominal trajectory is non-optimal in the earlier
portion, two steps must be taken: First, a(t) must be
monitered while performing the backward integration in step
(2) of the routine,note the time t = t_ g¢ When a(t) >0 or

when a(t) is equal to or greater than a small positive
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constant. Then [O,teff] can be used instead of [0,T].
{ (3) Since computer is used in the routine, the

quantized requirement may eventually conflict with the

v

NES ~ SO SE ~ SRR
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repetition in halving of the interval [0,T], i.e.,[tIﬂl
may eventually be smaller than one quantized step. This
difficulty may be remedied by either adjusting C or use

a smaller quantization for the integration.

2.4 Gradient Projection for Outer Optimization

Two basic ideas are covered in this section. First
we must see how the function-space gradient of the minimum
cost with respect to variations in the maximizing control
- v(t) can be computed. Second the fact that the search
direction must lead us to a new feasible point and yet
increases the minimum cost as much as possible must be con-
sidered.

2.4.1 Gradient Calculation

We are given J(u*(v),v).

To £ind the change in J due to a variation in v, we have

43 = 9J + du. 34
dv ov dv. aUu

If the minimum obtained from the inner optimization

process is not on the boundary, then O J evaluated at the
ou
extremal would b: equal to zero. In this case then the

gradient of J with respect to a variation in v would be

- S ANEALAR SN N
) f

qual to 97 .
oV
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In general, the first-order necessary conditions that

CNPO S g o

. * L] . L] .
S u (t) minimizes J(u,v) for any given v(t) are

x % * * *
J (u,v) = F(x (T)) + rL(gt_ (t) ,u (t),v(t),t)dt (2.53)
o
o % * * * .
E x (t) = £f(x (t),u (t), v(t),t); x (0) =x (2.53b)
" o
‘ sk * *
h x - - HE; J£ (T) = Fi(‘}'(' (T),T) (2.53¢)
Hy + p T, g, = O (2.534)

+* *
all the partial derivatives are evaluated at (x (t;,X,

* _'
u (t) 'X(t) ).

Consider equation (2.53d), we anticipate that the
*

* x %
previously optimal quantities u(t),x (t),J, J, (t) will have

N some variations with a small variation in the given v(t)
*
designated Av(t). We shall call these variations Au (t),

* A * .
ax (t), a4J , and AJx(t) respectively. Expanding (2.534)

to first order and subtracting out all nominal quantities,

we get

*

T
(H,, + & ‘ﬂux) . Ax + (H +ﬁ guu - AU

"
o

T *
+ (H£+'A§.gﬂ) AV +_f_u.AJ§ (2.54)

where care must be taken in the definition of the above
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partial derivatives to ensure that all the matrix and tensor
operations in equation (2.54) are compatible.

*
Moreover AJx can be approximated to the first order

* * -
by J . AX , equation (2.54) then becomes
XX

*

T * * T
(HB+/§" .9_££+ El_l_.Jxx) AXx + (H_IE + &g )-8

T, T.‘."TA‘/'..' ..'.,'..'.:a- T ""'"I i
SN e T T P 2 R M M- L e P

. T St o Tt - P

P P Pl .« . . . LA . N ‘e L

. -

]
o

T
+ (HE_‘L + % 'S-uv) . AV (2.55)

*
Solving (2.55) for the change in u with respect to a

small variation in v we obtain

o *

- du + T -1 T * o ax*

= a7 Wau YL -dyy) [l * R g, v ET ) E

s v H. o+ T

2 uv T -Gy (2.56)

All the terms on the right hand side of equation (2.56)

) BN el:
. ‘et Yy
PR

contain second order partial derivatives. An error analysis

similar to the one given in section 2.3.1 can be given to

F RRRRRES

show that 9_5* will be of second order as compared to the
- variation A v and AJ. Since we are dealing with a first
.
- order calculation, %_g can be neglected. In general then
74 .
:! : the gradient of J with respect to a variation in v approxi-
.
2 mated to the first order would be equal to 8 J. It is
v
[ well known from calculus of variation that at any instant
E_! t, ©J is equal to H,.
~ oY -
=
-
F’Q 49
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2.4.2 Gradient Projection

We are now dealing with the problem

*
Max [Min J] = Max J
v u v
s.t. g(x,u,v,t) £ O (2.55)

McFarland used the gradient as the search direction for his
algorithm. With the presence of the state and control con-
straints, however, the gradient direction may lead to an
infeasible point for the next iteration. It is obvious,
therefore, that some adjustments will have to be made to
counter this drawback. The most well known method in non-
linear programming to handle this situation is the so called
"projection method". 1In essence, linear constraints, or
linearized constraints, form a linear manifold (defined by
the region formed by the intersection of the constraints).
The gradient direction can then be projected onto this
manifold to produce a search direction s such that J;T.§>»O
so that the movement in the direction s will cause a;
increase in the functional J*at a new feasible point.

Let Aq be the g x p matrix of active constraints.
Actually Aq will depend on v, this dependence, however, will
be suppressed here to save space.

“ -

'a - {% cees &
o ?%El, 11 lp
A = TR R EEE RS = R R E R ) (2-56)

2 g cece.. 9 g a ces. A
) Vi oV ql ap

i P - -
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We not=e here that if the constraints are linear with respect
to the controls which is usually the case in the pursuit and
evasion problem, then the elements aij's of the matrix Aq
are just the eoefficients of the control variables in the

active constraints.

F-easfb/e/ Reg:‘an

l/'nea rized ’Aetive

Cansfra:'nf

Aetive Conslrain t

Figure 3 Gradient projection method applied at an active
constraint. If the constraint is nonlinear v(k*1) may be

infeasible.

51




T IY,
oo

on

e

c . .,
‘; ‘l"l')‘l 'l-“ 1
P ASYIAINEAA

If the active constraints are linear, the search
direction s will lie along the constraints themselves.
If not, then the search direction will lie along the hyper-
planes tangent to the constraints at z(k)where the super-
cript (k) indicates the number of iteration. If !(k+l)
proves to be infeasible as shown in figure 3, a restoration
phase will be used to move to the closest feasible point.
Since the problems we shall be dealing with later on con-
tain constraints which are linear with respect to the con-
trols, we shall be concerned only with such problem from
hereon. For this class of problem, at the end of each
iteration, we shall always end up at a feasible point.

To compute the projection, let us called the linear
manifold formed by the active constraints o“;'. Assuming
regularity of the active constraints, A, is a matrix of rank

q

gq<p. Since s must lie in u(/éwe must have Aq.§_ = 0.

Using the projection theorem in functional'analysis, the

*
gradient Ju can be decomposed into two parts as follows:
* T
J = s + A .ﬁi (2.57)

where s € uL& and Azﬁ_ d A

Multiply (2.57) throughout by Aqand use the fact that

A .s = 0 we have
q =

* T -
J - (Aqu) .ﬁi = 0 (2.58)
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From which we get

= a7t a gt 2
B = (A q Ag- u (2.59)

aubstitue this back into (2.58) and manipulate then

- _aT T,~1 *
s (1 Aq(Aqu) Aq] - I, (2.60)

The matrix
_ T T -1
P = [I-A(AAA) A ] (2.61)
9 ggq9ag q

is called the projection matrix or the projection operator
on the vector J: with respect to the subspace ole. The
outer optimization terminates when | s} is arbitrarily
small and all ﬁi > 0 where P, are components of B

computed from equation (2.59).

2.5 Algorithm Steps

As mentioned before, we shall cover the algorithm steps
required only for the maxmin operation. The minmax operation
is similar with the interchange in controls for the inner and
the outer optimization and the appropriate change in signs
in the search directions.

Starting Procedure

(1) Select a nominal control v(t), v (t), by suitable
logic using some physical insights or whatever is readily

available,

(2) Calculate all the local minima of J(u,v ) and rank

them in ascending order
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1 (n) (n)
Jo( )(Eo(l)'!o)' JO(Z) (2(2)'20),....,J°' (H 'Y'O)
(i) oo .
where u = = locally minimizing control i = 1,2,....,n

Following steps applied for the xEB ang (k+1) E

iteration (k = 0,1,....)

(3) Calculate J(l, and its norm '“J(l)u
u u

-k — k

where  Jat) = JT 30Ty .5, (mat (2.62)
o

b 11 L

(4) If “ Jél)“ £ El, a small positive constant, exit

a saddle point is located at (_\;_]il) +Vk) - If not continue.

(5) Find search direction Sy using

= (1)
Sy L Jgk (2.63)
where P, = I-A° (A Al y"1 a (2.64)
9k qk dx dx
T 7
(6) Calculate | s.f = s (t).s, (t)dt (2.65)
S o Xx
- 1)
and /9 = (a AY) a3 (2.66)
k dx 9k Ak U

(7) If ysgll<&_, a small positive constant, and all
— 2
/Bk 2 0 where 'Bk are elements of the multiplier vector /.i-k'
i i
exit a solution is located on the boundary of the problem.
If fsill < €, and any Pi < 0, remove that corresponding
constraint and go to (S). If [Is;f >€2 continue.

(8) Form new control

54.
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where Ak is a suitable stepsize logic.
If v (t) activates another constraint, then that

“k+1

constraint must be added to the matrix Aq .
3k+1
(9) Calculate all the new local minima of T+l

(9 ¥yeyy):
2 (1) , (1) (2) (2 (n) (n)
%! Jk+1(2k+1'!k+1)' T Bery a0 Ty (Ek+1'2k+1)
|
(L0) 1If \
i ) .
- (i) (1) (1) ( .
- Jye1 (Ek+1'!k+l)‘< Jk+1 (Ek+1'zk+1)' i. (2.68)

one of the previously higher minima has over taken the here-
tofore mincost. The crossover point has been overshot, go
to (11). If not increase the number of iteration by one, go

to (3), and reiterate.

(11) Find the cross-over point where

i i) 1)
ES I I & A

u ) 2.69
k+1(2k+1'!k+1) k+1 (-'k+l'!k+1 ( )

-

v . Ty . vy
. ‘,.I .;. P M
e 03 SR ST S

where i is the index when the inequality in (2.68) is

The resulting Vie+1 that satisfies (2.69) is the required

maxmin solution.
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CHAPTER 3

LINEAR QUADRATIC INTERCEPT PROBLEM

In this chapter, a general linear-quadratic differential
game will be formulated and reduced into a more simple form.
Analytical solutions will be presented in the non-constrained
case to illustrate the difference in the level of difficult-
ies between the cases when we have and when we do not have
the assumption of the existence of a saddle point. A linear-
quadratic pursuit and evasion differential game will be in-
vestigated. The case without any control constraint will be
solved analytically. Through a simple illustrative example,
physical outcomes corresponding to parameters of the problem
will be investigated. The case with control constraints
cannot be solved analytically. Two numerical solutions will
be offered. In the first one an indirect approach with the
assumption of existence of a saddle point and direct appli-
cation of DDP similar to the algorithm used by Neeland and
later by Jarmark will be used. In the second one the
algorithm developed in chapter 2 will be used to solve the
same problem without the assumption of a saddle point.

All the problems considered in this chapter will be assumed

to have perfect informations.

3.1 Formulation of Linear-Quadratic Differential Game

Generally, a linear-quadratic game will have the
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following cost functional:

T T T
J(u,v) = 1/2 y (T)CTCy(T)+1/2 Jo [g‘r(t)olg(t)-g(t)ozv(t)1dt

where y = n x 1 state vector (3.1)
C =Y x n terminal weighting matrix v € n
U =mXx 1l control vector of player U
v =p X 1 control vector of player V
Ql'Q2 = mxmand p X p positive definite matrices

Note that CTC is at least positive semidefinite and that any

positive semidefinite matrix may be expressed as the product

CTC.
The state vector y(t) is driven by the following dyna-

mic and initial condition

Y(t) = F(t) ¥Y(t) + G (r)ult) + Ez(t)y_(t): y(0) = Y
where F(t) =n xn system dynamic matrix (3.2)
al(t), G,(t) = n xmand nx p system input distri-

bution matrices

The state vector y with dimension n can be reduced to
the more convenient and often more meaningful "reduced state
vector” x with dimension r £ n. Define

x(t) = C @(T,t) y(t) (3.3)
where Q?(T,t) is the state transition matrix satisfying
& (T,t) = - B(T,t) F(t); (T,T) = 1I : (3.4)
Differentiating (3.3) we get :
x(t) = CB(T,&) y(t) + ¢ S(T,t) y(t)

= - CH(T,t) F(t)y(t) + C &(T,t) F(t) y(t)

+ C3(T,t) G (t)u(t) + CP(T,t) G,(t)v(t)
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= Gy (t)ult) + Gy(t)v(t) (3.5)

where G, (t) = C@(T,t)G, (t)
Ga(t) = C @(T,t)G,(t)
Note that x(0) =:C&(T,00y(0) = x
x(T) = C&(T,T)y(T) = C y(T)

Thus, the cost function and the dynamic can be rewritten as
T

J(u,v) = 1/2 §?(T)§(T)+l/2 J (E?ng - X?sz)dt (3.6)
o
and
x(8) = G (Bu(t) + G, (B)v(t); x(0) = x, (3.7)

Since no assumption is made in the derivation of this reduced
state form, it is as general as the form represented by
equations (3.1) and (3.2). The state x, however, is a more
meaningful measure of the game than y since x will indicate
what the game will end up with if no furthur control is

applied by any player.

3.2 Analytical Closed-Loop Solution

Analyses of the problem represented by equations (3.6)
and (3.7) will be presented in this section: one with the
assumption of existence of a saddle point and another without
such ;ssumption.

3.2.1 With Assumption that Saddle Point Exist

The Hamiltonian of the problem is

H = 172 T 0, u-vTQ, v) + X (G, u+G_v) (3.8)
= ¥l = = *2 - = ""1- 2 —

The costate equation is

A = -OH = 0 =D X\ = constant vector
ox :
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Then
AlE) = XN (T) = x(T) (3.9)

The last equality is obtained from the transversality condi-

- tion.
ki Since we are dealing with the unconstrained problem,
3 Pontryagin optimality principle states that
o * T
2H = Q;u +G; A = 0 (3.10)
2u
and
* T
@2H = -Q,v +G,A = 0 (3.11)
3V

Note that these two equations can be used simultaneously
because we have the assumption of existence of a saddle point.

*
Also the positive definitness of Q, and Q, guarantee that u

1
*
and v is the minimum and the maximum respectively. Thus

* _1 T
u = - Ql Gy _}_(_(T) (3.12)
v = o=t 6T x(7) (3.13)
- = 2 2 = *

* *
Substitue u and v back into (3.7), irtegrate from t to T,

and solve for x(T) we get

X(T) = W(t) x(t) (3.14)
where

T el ar JT 6.0 teTan * 3.15

Wie) = (x4 [ 60" 6 ar - | 6,0, Gyat] (3.15)

Therefore, the saddle point solution is

wi(t) = - Qzlcf(t) W(t)x(t) (3.16a)
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* _ _l T
v o(t) = Q% GZ(E) W(t) x(t) (3.16b)

*
14

J(a,¥') = 1/2 xT(£) W(t) x(t) (3.16c)

M ) A
i

&
A

fiaph A
R
VR

3.2.2 Without Assumption that Saddle Point Exist

In this ;ection the minmax and the maxmin solution must
be solved sepérately. With the existence of a saddle point
assumption, the condition that the solution exists is that
W(t) must be positive definite for all t in the interval
[0,T] of the game. We shall see that the condition becomes
more stringent without the saddle point assumption.

MINMAX SOLUTION:

First we look for v that maximizes J(u,v) with an
arbitrary u. For this purpose, equation (3.13) is still
valid and we have

A -1 T
vit) = 05 G x(T) (3.17)
Substitue ﬁ into the dynamic equation (3.7), integrate

from t to T and solve for x(T) we get

T
x(T) P(t) [x(t) + I G () u(masl, 0 ¢ tg T (3.18)

t 1

where

T - T -
P(t) (1 - I 6, (M ot 6, (1 an7? (3.19)
t

For P(t) to exist we must have

T -1 T
[1- jt GZ(T) Qzl G2 () d7] > 0 for all 0gtgT (3.20)
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then

T
Q; 6 (£)P(t) [x(t) +Jt G, (Mu(mdr] (3.21)

St

A

Note that v(t) is globally optimal as long as (3.20) holds.
Since the starting time t = 0 is arbitrary, rewrite the

cost functional in equation (3.6) to complete the game from

. A
time t and also substituting (3.19) for v and manipulate we

get
A T -1 T o
J(u,v) = 1/2 x (T) P "x(T) + 1/2 uou dr (3.22)
t
using (3.18) in (3.22) then
A T T T T o
J(u,v) = 1/2[x + G ud7?] Plx + G.,udr] + 1/2 | u Q_udr
- - Je 17 - Je 17 £ 1

(3.23)
Let u(?") varies by a small amount Au(r), expand (3.23) to
first order in Taylor's series and subtract out nominal

terms

A T T T T
AJ(u,v) = {[x(t)+ | € uds]l P(t)G, (7 + u (T)Q}au()
(3.24)
Since Au(?) is arbitrary, the variation of the cost function-
al is zero only when the term { ———ocue- } = 0 in equation

(3. 24) hence

T
(M = -7t el (m r(e) Ix(t) +J G,udfl, t<T4T  (3.25)
1 t
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To solve for u we multiply each side by Gl(T) and integrate

from t to T

T JT -1 T J’T
? Ud = -
. Gl( ) u(r)ar . Gl('r)Ql Gy (MIP(t) [x(£)+ ¢ Gpudsldv
(3.26)
Manipulating we get
T T T
= - -1.7 -1 -1_.T
Jt Glg_('r)d'r = 1+ Jt GlQl Gldr.P(t)] . J't GlQl Gld-r.
P(t).x(t) (3.27)
O (3.28
Let A = . lQ1 G1 dr .P(t) .28)

Since A is positive semi definite, I + A is positive definite
for all t €[0,T]. Therefore the above inverse in (3.27.)

always exists. Add x(t) to both side of (3. 27)

T -
x(t) +j Glg_('r)d*r = x(t) - [I+a) 1 A . x(t)
- t
= {1-1x + a171a} x(¢)
= 11+a1”} x(t) (3.29)

Multiplying both side by P(t) we have

p T T -1 T -1
P(t)[x(t) + | Gu(mdr] + P(&)[I+ | G0 G aTP(t)] x(t)
- Jt 1= t
(3.30)
y T o le a 3.31
A = I GlQl Gl o (3.31)
p
B = caolgt ar (3.32)
Je 22 %2
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then the right hand side of (3.30) becomes

-1 _ -1 . -1
RHS = [I-B] "{I + & [1I-B) }  x(t)
= (1-B+A]"t x(t)
Therefore
P(t) [x(t)+ ] Gyu(mar] = [1+ I G,Q, G,d7r-] G,0, de7] x(t)
t t t

= W(t)x(t) ) (3.33)
Substitue back into (3.25) yeilds
A - T
u(r) = -Ql Gl(T) W(t) x(t) tgr4T (3.34)

A
Substituting u(7) into (3.20) and perform matrix manipula-

tion similar to the one above
A -1 T )
vit) = 02 G5 (t) W(t) x(t) (3.35)
Comparing (3.17) with (3.35) we have

x(T) = W(t) x(t) (3.36)
Using (3.34),(3.35) and (3.36) in (3.22) we get

J@Y = 1/2 X (8) WEIX(E) (3.37)

MAXMIN SOLUTION:

In this, case we first look for U = Min J(u,v).
u
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Equation (3. 2) can be used to start off

~ -1 T
u(t) = -0 Gl(t) x(T) (3.38)

Substitue §(t) into (3.7) integrate and solve for x(T)

T
x(T) = M(t) [x(t) +J Gz('?‘)y_ (1) ar) (3.39)
t
T - -1
where M = [I + Jt Gl(q)_ QllG_’Lr (7)1} (3.40)
~ -1.7T T .
hence u(t) = -9, Gl(t)M (t) [x(t) + Jt G2(-)V(1’)d1’] (3.41)

Note that M always exists because A >0 and I+A >0 for all
0<t<T. Then (3.42)
830, = |* {ixe) + [T o vae 1T mwreym - vTimo,}

Av(T)dr

for arbitrary Av(7T) again { } must be zero for the

variation to be zero, hence

T

V(v = ooley(m M (t) I[x(t) +Jt G, vdf ], t& TST  (3.43)
Premultiply (3.43) by Gz(‘r) and integrate from t to T

T T -1 T
. Gz(’f)y_('f)d‘r = ]¢ G, (™) Q, G, (MIM(t) [x(t)+ . Gzy_ds laxr
(3.44)

Again (3.43) can be rearranged to give
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T T -1 T
~ - - -1 T -1 T
. M(t)x(t) (3.45)
Now

T - -1 - T - -
1 - J Gzozlcgdq-. M(e)] T = [ l(t)-‘I 6,05 cTarM(t) 17!
t t
= wl) meyd
=M~ (t) W (t) (3.46)

Therefore, the indicated inverse in (3.45) exists if W(t)
exists which is the same condition for the existence of the
saddle point solution. Substitue (3.46) back into (3.45)
T -1 T -1 T
Gy (P)v(T)dr = M " (t)W(t) G (T) 0 G_(™)drM(t)x(t)
(3.47)

Add x(t) to both side, premultiply by M(t), and manipulate

to obtain
T
M(t) [x(t) +.It Gz(?)g(T)dT] = W(t)x(t) (3.48)
Hence
~ -1 T
v(ir) = 02 Gz(‘r) W(t) x(t) V‘ tgrgT (3.49)

66




Substitue back into (3.41) to get

Tr) = -Q7t 6] (&) W(t)x(t) (3.50)

and again J(u,v) = 1/2 _igT(t) W(t)x(t) (3.51)

3.2.3 Summary of Analytical Solutions and Discussion

S All the above results may be summarized as follow:

SADDLE POINT SOLUTION

h Optimal controls:

e

o«

S
"

-1
-0; G (E)W(E)x(E)

<
z
L}

o et () wW(t) x(t)
2 2

Optimal Cost:
* %
’

T
J(u,v ) — 1/2 §° w(O):_tO

Condition for existence:

% T T

4 1 +J ¢ 076, ar J 6,0, 6,47 > 0 YogtgrT
-~ t t

h::;

C-"; MINMAX SOLUTION

1 Optimal Controls:

F-

)

A -
u(t) - o7'6] ()W (t) x(t)
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A -1 7
v(t) Q, Gz(t)W(th_c(t)

Optimal Cost:

A A T
J(u,v) 1/2 x W(0)x
.3 %

Condition for existence:

T
I - GQ—lGTd‘? >0 Vocts'r
22 2
t

MAXMIN SOLUTION

Optimal Controls:
- -1 T
u(t) = -0, Gl(t)W(t)ﬁ(t)

v(t) = Q_ G_(t)W(t)x(t)
2 2 =
Optimal Cost:
T
J(E,v) = 1/2 x W(0)x
2 X

Condition for existence:
1+ | cotcTa JTG Slasar>o Yoe tg T
¢ G191 €197 7 ¢ €22 G972 €re

DISCUSSION:

Following remarks may be made about these solutions:

(1) Controls and costs are the same in each case,
thus a saddle point does indeed exist for linear-quadratic
differential game. The optimal cost in each case is the
value of the game and neither player can do anything

unilaterally to improve his cost.
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(2) Conditions for the existence of the sadd . point
solution and the maxmin solution are the same. For minmax
solution, however, the condition is more stringent. It
might be noted that if the necessary and sufficient for the
minmax solution is satified for a game, then the necessary
and sufficient condition for both the maxmin and the saddle
point solution will be automatically satisfied because the
missing matrix in the conditions for the latter two is at
least positive semidefinite.

(3) All the solutions solved for this problem are in
closed-loop form which is indeed more desirable than the
open-loop solution. It might be noted, however, chat linear-
quadratic problem is about the only type of differential
game for which closed-loop solution may be solved analytic-
ally. Moreover, as we shall see later, if the constraints
on state and controls are added to the game, even. for a
‘linear-quadratic problem a closed-loop solution is not

always guaranteed.

3.3 An Illustrative Example Without Control Constraint

The example given in this section will be the same as
the one considered by McFarland. However, more extensive
results will be offered to gain a more meaningful insight
into the problem. Our goal here is to show that in contrary
to McFarland's implication that the linear-quadratic formu-
lation of a pursuit-evasion problem is likely to yield

trivial solution, this difficulty may be avoided by careful
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ﬁt examination of the problem to avoid any conjugate point in
ii the solution. The incentive to present the illustrative
example in this manner is two folds. First it will be
shown that even simple unconstrained linear-quadratic

problem can have a meaningful physical realization. Also

in the next section, the same example with constraints will

be used to show that analytical solutions are not péssible

in such case and numerical solutions with and without the

saddle point assumption will be offered.

+x Line of +xp
Intercept +
} | t
i
- ' -
v =2Xx i u=x
e p
|
s | s
e | P
i
)
|
EVADER PURSUER
. L >

Figure 5. Simple Plannar Intercept Problem
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A simple planar intercept problem is diagrammed in

figure 5. Xe and x, are lateral positions of each players

who move towards one another with constant forward veloci-

ties s_ and s_ respectively. The interception time or the

e p
time when the players pass each other is T = L seconds.
Se + 5

Each player controls his lateral position by using his res-
pective lateral velocities, u(t) and v(t), as control inputs.

Thus we have

x = u, x (0) = 0

P ; P

. (3.52)
X = v, x (0) = 0

e e

Generally, x and xe can be used as the states of the
P
problem. But as we shall see, it is more convenient and
more meaningful to define a state x(t) as

x(t) = xe(t) - xp(t) (3.53)

Thus x(t) may be interpreted as the lateral miss distance

if both players use no further control from time t until
the end of the game. Using (3.53) in (3.52) the dynamic
equation is

x(t) = v(t) - u(t), x(0) = 0 (3.54)

The pursuer is trying to minimize the miss lateral

distance at the time of interecption without using excessive
control energy while the evader is trying to maximize the
same miss lateral distance while using reasonable control.

Therefore, we have a two person zero-sum differential game
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with the cost function:
2 T 2 2
J(u,v) = 1/2 x“(T) + 1/2 (qlu - Qv )dat (3.55)
t

Using the results of section (3.2), the solutions are

A -~ *

u(t) = u(t) = u (t) = Ww(t) x(t) (3.56a)
9

A ~ *

vit) = v(t) = v (t) = w(t) x(t) (3.56b)
q2

~where
-1
W(t) = (1L + T-t - T-t) (3.57)
9 q2

The necessary and sufficient condition for the minmax solu-
tion is

l1-T-t 30 for 0 St 4T (3.58)
q
2

This is the same as the condition g,> T. Substituting (3.56)

into (3.54) it is apparent that the only stable solution for

the resulting differential equation is x(t) = 0 for O &t <T.
Therefore
A ~ *
u{t) = uft) = u (t) = 0 (3.59a)
A ~~ *
vit) = wv(t) = v (t) = 0 (3.59b)

This solution makes sense in the pursuer viewpoint
since the initial lateral miss distance is zero and since
the evader is not making any move, the pursuer then can
hold his position until he runs into the evader at the time
of interception. From the evader's point of view, however,
this is indeed a strange solution since we would expect

him to do something to avoid collision with the pursuer.
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This strange result occurs because (3.58) calls for too
much weight g, on control v(t) otherwise we would have

the maxmin solution V(t)— o« . However, we only have

this dilemma for x(0) = 0 which is the only case McFarland
considered. If we let x(0) = X, # 0, then the solutions
are .
A ~ * q .
u(t) = u(t) = u (t) = 2 X, (3.60a)
q;9; - {9;-9,)T
A ~ * q
vit) = v(t) = v (t) = 1 x_ (3.60b)
99, - (g9;-9,)T
with the value of the game
A~ 99 2
J(u,v) = 12 x_  (3.61)

2 (qlqz' (ql"qz) T

The interpretation of this result can be summarized

as follow:

Case 1l: ql = q2 = q
A~ *
then u=u=u = 1l x
g ©°
A ~ *
v=v=vy = 1l x
ao
N o~ 2
and J(u,v) = 1/2 X

In this case the evader cannot get further away from the
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initial lateral displacement if the evader is using his
optimal control.
Case 2: ql> q2
then from (3.60) ) < 15wl . Physically, this makes
sense because in this case since the pursuer is putting more
weight on his control, he is penalized more than the evader
if both players use the same amount of control. Therefore,
the pursueris induced to use less control than the evader.
Also since

99,

x(T) = X (3.62)

— (o]
9,9, = (9;-9,)T

x(T) is larger than X in this case. Moreover, the larger
q, is in relative to dy the larger x(T) will be. Thus the
pursuer can escape if q, is large enough and the evader is
restricted to use a small amount of control. It is inter-
esting to note that, if the necessary and sufficient condi-
tion in equation (3.58) is satisfied, x(T) cannot be nega-

tive with respect to x

(e}
Case 3: ql < q2

then |G(tH > V(b))

the evader .is induced to use less quantity of control in this
case because more weight is being put on his control. From
(3.62), x(T) is smaller than x° in this case and the pursuer
c#n get closer to the evader than the initial lateral dis-

placement.. Interception can be made if g, is large enough,
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The magnitude of g, required for interception depends upon

the radius of interception, the magnitude of X5, the time

of interception T, and the weight g, on the pursuer control.
This example clearly illustrates that even a simple

unconstrained linear-quadratic problem can be meaningful

if it is set up carefully to avoid the conjugate point

difficulty.

3.4 Linear Quadratic Problem with Hard Limit on Controls

In this section, we shall use the same illustrative
problem described in section 3.3. The cost function and
the dynamic equation are repeated here for convenience.

172 x2(T) + 1/2 J'T
t

Cost: J(u,v) (qlu2 - q2v2)dt (3.63)

Dynamic: X

v(t) -u(t), x(0) = X, (3.64)
In addition we add the following constraints
juj¢ 1, ivigl (3.65)

This problem can be solved analytically, if the para-
meters are set up in such a way that u and v do not exceed
their limits. In that case the results are of course the
same as those presented in the last section. The actual
derivation for the conditions and the solutions for this
problem such that the optimal controls lie within the control
boundaries will be taken up in appendix B. Also in appendix
B, we shall demonstrate the equivalency between the closed
loop and the open loop solutions for this specific problem.

However, this problem in general cannot be solved

analytically. To illustrate this point, let us try to find
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the minmax solution. The Hamiltonian of the problem is

H = 1/2(qlu2 - q,v?3) + A(v-u) (3.66)

and the costate equation is

. AN =_0H = 0 (3.67)

oX
Therefore, X (t) = constant (3.68)
From transversality condition: A (T) = x(T) (3.69)
Thus A(t) = A(T) = x(T) YogtegrT (3.70)

Now, for an arbitrary u, maximize J with respect to v.
Pontryagin Maximal Principle states that

H(xf u, vf }: t) 2 Hix,u,v,)t,t) (3.71)
where * indicates optimal quantities. Consider the terms
in the Hamiltonian which contain v, we have

-1/2 quv? +xv (3.72)
if gy< A, it can be shown that
%*

v = sgnA = sgn x(T) (3.73)

substituting (3.73) back into (3.64) yields

x = sgn x(T) - u (3.74)
integrate from 0 to T and rearrange
T
x(T) = X, t T . sgn x(T) - J udt (3.75)
t

It is not clear that x(T) and or sgn x(T) can be solved
from (3.75) unless all parameters including the arbitrary

u are assigned numerical values. In fact equation (3.75) is

transcendental.
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This problem then must be solved by numerical methods.
In the next section, two numerical solutions will be off-
ered, one with the assumption of a saddle point DDP is used
directly to simultaneously solve for u* and vt and the other
without the assumption of a saddle point the algorithm deve-

loped in the last chapter is used to solve for the maxmin

and the minmax solutions.

3.5 Numerical Solutions

Computer programs using Fortran Language in conjunction
with the WATFIV compiler are written to obtain numerical
solutions for the problem described in the last section.
These programs are listed in Appendix C. In the first pro-
gram, the existence of a saddle point is assumed, and DDP is
used to simultaneously solve for the optimal controls for
each player. 1In the other two programs, the minmax and the
maxmin solutions are searched for using the algorithm
developed in Chapter 2. As expected the program with the
saddle point assumption contains less number of programming
steps than each of the other two programs. We shall call
the solution obtained with saddle point existence assump-
tion the saddle point solution, and the other two the min-
max solution and the maxmin solution respectively for obvious
reason. A large number of batch jobs are computed using
UCLA Campus Computing Network's IBM System 360 Model 91.
The computation time for all three programs are extremely

fast. The execution time for all three types of solutions
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are essentially the same. For a typical set of parameters,
the execution time for all three programs are approximately
0.2 second each for an 8 seconds encountered between the

two players.

3.5.1 Algorithm Mechanization

An integration scheme is needed to mechanized the

algorithm for the DDP both in integrating the state equation

forward and also to integrate the set of equations (2.49)

backward. Since the structure of this problem calls for a
constant values for the optimal controls during the entire
interval of the game, simple Euler's scheme of integration
can be used to obtain accurate results.

To mechanize the algorithm on the computer, discretiza-
tion must be made. For this purpose, the encountered time
is devided into 64 increments. For a typical encountered
time of 8 seconds then each increment of time is equivalent
to one-eighth of a second.

Even though the programs are written to accommodate
the step-size adjustment described in section 2.5.3, no
step-size adjustment were needed for the large set of para-
meters on the trial runs on this problem. Equation (2.52)
is satisfied in all cases of the trial runs.

Table 1,2, and 3 are computer printouts of the saddle
point solution, the minmax solution, and the maxmin solution

respectively for the following set of parameters:
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t
]

180 kilofeet

w0
(1]
"

15 kilofeet per second
Sp = 7.5 kilofeet per second

= 8 seconds

]
(]
t

The control limits are chosen as ten percent of their res-
pective forward velocities

Ivl € 1.5 kilofeet per second

lu] &€ .75 kilofeet per second

For the saddle point solution, both initial controls

were chosen ag zero. USTAR and VSTAR are the controls that
minimizes and maximizes respectively the Hamiltonian in
each iteration. Number "1" in the "step adj" column indicates
that the set of equations (2.49) is integrated backward to |
the time t = 0. It might be noted here that the further the

algorithm progresses, the closer the predicted cost change

in the column "A(N)" agrees with the actual cost change in

the column "DELJ". For this set of parameters, the saddle
point solution converges in five iterations with approximately
0.2 second execution time. Both optimal controls are satu-
rated for this set of parameter. The value VSTAR = 1 in the
first iteration satisfies equation (3.60 b) of the uncon-
strained problem. Therefore, similar to optimal control,

the results here confirmed that a constrained differential

game cannot be solved as an unconstrained differential game
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and let the controls saturated when and if the resulting
controls exceed their limits. These values, however, can
be used as the initial controls for the algorithm as illus-

trated in the minmax and the maxmin solutions.

In both the minmax and the maxmin solutions, the initial
controls are computed from equations (2.60a) and (2.60b),
the saturated value is used whenever a control exceeds its
limit. In the minmax solution, the gradient of the maximum
cost in each of the overall iteration is always negative.
Similarly, in the maxmin solution, the gradient of the mini-
mum cost is always positive. This indicates that the right
directions are being searched. Note also that the absolute
values of the gradients form monotonic decreasing sequences
and thus assure the convergence property of the algorithm.
In the minmax and the maxmin algorithm, DDP is used for the

inner optimization, and gradient projection method is used

in the outer or overall optimization. For this particular
set of parameters, the minmax solution converges in two
overall iterations with four iterations of the DDP for the

first inner maximization while the maxmin solution requires

five overall iterations to converge but each inner minimiza-
tion converges in one iteration of the DDP. The total comp-
utation time for both solutions are again approximately 0.2
second each. Therefore, we can conclude that there is no

appreciable difference in the computation time of this pro-

blem for all three types of solutions.
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For all the large number of sets of parameters run for
this problem, all three solutions give the same answers for
the optimal controls. Therefore, even though it has not
been vigorously proved analytically, we may heuristically
say that the saddle point does indeed exist for this type
of constrained linear-quadratic differential game as con-
firmed by our numerical experiments.

For the particular set of parameters shown on table 1
through 3, equal weights are put on the penalties on the
controls of both player. 1In this case, we recall that the
unconstrained case calls for an equal amount of controls
from both players and neither the pursuer can get any closer
nor the evader can manuver to be further away than the
initial lateral displacement X,. In the constrained case,

however, since the pursuer in this case is more limited in

his lateral speed, the evader can use his superior capabi-
lity to get further away than the initial lateral displace-
ment as shown by x(T) = 16 kilofeet when X, = 10 kilofeet

in this case.

3.5.2 Effects of Parameter Variations

Table 4 illustrates the effects of changing the initial
condition Xq with a fixed set of other parameters. As
expected, when the initial lateral displacement is small,

the solutions stay within the boundaries and are the same

as those obtained in the unconstrained case. For the set

of parameters shown in table 4, the solutions are the same
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for both the constrained and the inconstrained case for

Va0
Pt
Iy

Ix,1 € -75 kilofeet.
With larger initial lateral displacement, the pursuer's

control becomes saturated. The evader can then take advant-
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age of his superior capability to obtain larger final lateral
separation beiween the two; whereas we have noted before in
the unconstrained case that for 9y = 9y which is the case
here, neither player can get any closer nor further away
from each other than their initial lateral displacement.
Besides making use of his superior capability, the evader
has another reason which induces him to use more control
in this case than he would have used in the unconstrained
case. That reason is the fact that the control limited by
the pursuer has introduced a relative saving in the cost
function for the evader.

The evader's control becomes saturated when x_ is only

(o]

9 kilofeet whereas in the unconstrained case this same xg

would yield an optimal control of only .9 kilofeet per

e second for the evader which is only sixty per cent of his

Eﬁ capability. For Ix\ > 9 kilofeet both players use their
maximum capabilities for their optimai controls. The lateral
missdistance is 6 kilofeet greater at the final time than

it was at the initial time. This difference is brought
about by the evader's superior capability and remains the

same for all |x | » 9 kilofeet.

Table 5 and 6 show the effects of changing the pursuer's
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weighting factor q; when the evader's weighting factor

q, = 10 and x, = 8 kilofeet and 10 kilofeet respectively.
The control limits in both cases are |ul £ .75 kilofeet per
second and |vi<£ 1.5 kilofeet per second. In table 5 we see
that the pursuer's control is saturated for q;€ 12. This is
not surprising because with relatively small q;. the gain in
the final lateral miss distance offset the penalty of using
more control for the pursuer thus he would use as much con-
trol as he possibly could. With larger dy however . the
pursuer is forced to use less control than his limit. The
solutions for q1> 12 in table 5 are the same as the uncon-
strained case and the minmax and maxmin solutions converge
in one iteration. 1In table 6 both players are forced to

use their respective maximum control because of the relatively
ilarge value of xo.

In table 7, the values of x ,» and g, are doubled

o’ ql
when compared to the same parameters in table 5. Close
examimation reveals that the solutions in both table 5 and
table 7 follows the same relative pattern even though the
absolute magnitude of the unsaturated controls for both
players are lower in table 7 because of greater penalties
for the control inputs.

Table 8 and 9 demonstrate the effects of changing the
control limits. In table 8, both players have equal capa-

bilities, the optimal controls in this case then depend

upon the relative values of the penalty weights q; and q,
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and the initial lateral displacement x In table 9, the

o.
pursuer's lateral capability exceeds that of the evader.
The limits on control inputs are interchanged if compared
to those in table 7, the pattern of the solutions, however,

is consistent if the limits interchange is taken into

account.

3.5.3 Discussion on the Algorithms

Before we close this chapter, several points can be
made on the algorithms used in this section.

(1) All three types of solution are the same for each
particular set of parameters. Therefore, we can conclude
that for linear-quadratic problem saddle point exists for
both the constrained and the unconstrained cases.

(2) The saddle point solution takes less programming
steps than each of the minmax solution and the maxmin
solution.

(3) Computation times are approximately the same for
all types of solution. All three types converge very
rapidly in most cases.

(4) The saddle point solution uses u(t) = 0 and v(t)
= 0 as initial controls whereas the minmax and the maxmin
solutions use the results of the unconstrained case as
initial controls (using saturated values wherever appropri-
ated). This, however, is a very minor modification since

the solutions for the unconstrained case is very easy to

compute.
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;: For q = 49 = 10 u .75 v 1.5
xo u* v* x*(T) J*
1.0 .10 0.10 1.00 0.50
2.5 .25 0.25 2.50 3.13
5.0 .50 0.50 5.00 12.50
7.5 .75 0.75 ‘ 7.50 28.13
8.0 .75 1.00 10.00 32.50
9.0 .75 1.50 15.00 45.00
10.0 .75 1.50 16.00 60.50
11.0 .75 1.50 17.00 77.00
12.0 .75 1.50 18.00 94.50
15.0 .75 1.50 21.00 153.00
20.0 .75 1.50 26.00 270.50

Table 4. Effects of Variation in Xq

88




¥

A 4

T TPTY
VAT .,
. A A Y

oy TN Tre—
R

LORERe RUAGRO I PO
S Sl o T Lt Lt
IERPTR RO e e

i

L Yo f =4 « ok S AL
- L L AR

8GR i ars can ey a0
% .

e T

B 2 2 A 3 e es ot oam el

QVRPVRAG ¢ (R Tars e

...ﬂgg... 3
Y SO

RIS PO

g

e e g ¥ Dl
S ".' ALV RS SRR A S
* R T S S ot
. e R TR PRI
. [
.
:
1
)

© o & N

10
12
14
16
18
20

Table 5.

.75
.75
.75
.75
.75
.75
.75
.74
.71
.69
.67

10

.98
-98
,98
.98
.99
.99
.99
1.04
1.14
1.24
1.33

89

.75

*
x (T)

9.86
9.86
9.86
9.86
9.89
9.89
9.90
10.37
11.43
12.41
13.33

12.25
14.50
19.00
23.50
28.00
32.50
37.00
41.48
45.71
49.65
53.33

Effects of variation in q; with x, = 8 kft
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.............................................................
...............................................

. N * * * *
A ql u v x (T) J
. .75 1.5 16.0 40.25

.75 1.5 16.0 42.50
.75 1.5 l6.0 47.00
.75 1.5 16.0 51.50

0o O & N

.75 1.5 16.0 56.00

10 .75 1.5 16.0 60.50

12 .75 1.5 16.0 65.00
X 14 .75 1.5 16.0 69.50
16 .75 1.5 16.0 74.00
18 .75 1.5 16.0 78.50
20 .75 1.5 16.0 83.00

4 - ‘ - Table 6. Effects of variation in q; with x, = 10 kft.
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u .75 v 1.5

v* x*(T) J*

0.83 16.58 85.57
0.83 16.58 94.57
0.83 16.58 105.82
0.83 16.58 117.07
0.83 16.58 128.32
0.87 17.38 139.12
0.°02 18.46 147.68
0.96 19.31 154.47
1.00 19.97 159.99

Table 7. Solutions when x,, q, and q, are doubled

as compared to those values in Table 5.
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10
15
20
25
30
35
40

Table 8.

1.00
1.00
1.00
0.94
0.80
0.70
0.62
0.55
0.50

capabilities,

.............
..............................

.....

0.67
0.67
0.67
0.71
0.80
0.87
0.92
0.96
1.00

92

REAEN
.........

*
x (T)

13.34
13.34
13.34
14.12
16.0

17.38
18.46
19.31
19.97

57.33
73.33
93.33
112.94
128.00
139.12
147.68
154.47
159.99

‘Solutions when both players have equal




.........................

qQ u v x"(T) 3

1 1.50 0.34 6.68 22.33
5 1.46 0.36 7.26 58.18
10 1.14 0.57 11.42 91.43
: 15 0.94 0.71 14.12 112.94
= " 20 0.79 0.75 15.71 127.86
- 25 0.66 0.75 16.69 138.33
30 0.58 0.75 17.37 146.04
35 0.51 0.75 17.90 151.97
40 0.46 0.75 18.33 156.66

o Sl 0 T
R PYak

Table 9. Solutions when the pursuer's capability

e exceeds that of the evader
o 93
-




CHAPTER 4

A NONLINEAR STOCHASTIC PURSUIT - EVASION PROBLEM

The most natural application of differential game
theory probably falls on a class of problem known as pursuit-
evasion where two or more adversaries engage in a combat type
mission. The state of the art of this problem has already
been discussed in Chapter 2 of this report.

In this chapter, a model for nonlinear stochastic
pursuit-evasion two-person zero—sﬁm differential game will
be formulated. The problem will then be solved using the
simple algorithm developed in Chapter 2 for a set of desig-
nated parameters. Lastly, many aspects of the computational
results will be compared to those obtained by McFarland.

Several important features of two person zero-sum d4dif-
ferential games will be illustrated by the problem studied
in this chapter. The dynamics of the problem are nonlinear
using the set of sufficient statistic of the actual physical
entities. In this manner the elements in the set of suffi-
cient statistics can be treated as the state variables of a
deterministic problem and hence reduce the complexities of
the stochastic problem greatly. Moreover, the values of the
cost function‘for the minmax and the maxmin solutions of
this problem are not the same. Thus, we are presented with
a realistic ?roblem whose solutions are not "saddlepoint”

and hence substantiating the fact that saddlepoint does not
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o have to exist in a general differential game. This fact

also serves to strengthen the two examples presented in

Chapter 2. The cost function of the problem utilizes the

probability of survival as a probabilistic measure and pro-

" u——
e . .'l..14 I )
AR

.

vides a reélistic flavor of a stochastic differential game.
Furthurmore, the information sets available to each player
are limited on only those state variables observable by
each player.

4.1. Description of the Problem

A simplification of the missle-anti-missle intercept
problem will be studied in this chapter. An incoming attack-
ing missle, maneuverable laterally, is trying to avoid being
intercepted by an antimissle, also maneuverable laterally.
The attacking missle, however, is also charged with the task
of trying to destroy an isolated target (a military install-
ation, an industrial complex, or any other strategic target)
and thus cannot stray too far away from a designated path.
On the other hand, the antimissle which is trying to defend
the target is launched from an area on or near the target.

A ground support radar will keep track of the position of
the oncoming attacking missle and hence the defender will
have a full set éf informations on both his own and the
enemy positions. The target defender will make use of these
informations and try to minimize the distance of closest
approach between it and the intruder. If it gets close

enough, the attacking missle is neutralized or captured
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...........
....................

Only one pass is allowed for this problem because once
the missles pass one another, the antimissle will not be
able to turn around and try to catch the attacking missle.

The control center of the attacking missle will be too

ROML > DURCSLCOGALE. oAb

far away to observe the actual positions of both missles

by radar. Héwever, with the present technology, it is not
hard to visualize an attacking missle with an on board
"computing capability to compute its own displacement from a
designated path. Therefore, the attacking missle will only

be able to make use of the information on his own position.

The attacking missle is deemed to score or accomplish its
mission if it manages to avoid interception and yet reach
the target zone.

For this problem, we shall call the evader player U
and the interceptor player V.

To make the problem tractable, simplification assump-
tions will be made, nevertheless significant features of
the general problem will be maintained. The simplified
version of the intercept problem is illustrated in Figure 6.
One simplified assumption is that planar motion is assumed.
This is equivalent to a classical aeriel combat encounter
over a flat earth.

The mean initial line of sight (LOS) between the two
players has the length L. This line will be used as a basic

reference line for the problem. The initial position
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dispersion along the reference line L is much less import-

.
o test N
AP

ant to the problem than the lateral position dispersion,
since the variation in L only effects the variation in the
"interception time T" and the "target engagement time Tg".
The interception time T is defined as the time when both
players reach the locus of distance of closest approach.
The target engagement time Tg is defined as the time when
player U reach the line extended from the target perpendi-

cular to the line of sight L. Thus T and T, may be regarded

]
as fixed.

Both players’ initial velocitiés are assumed parallel
to the line L. The lateral maneuvering of each player is
assumed uncoupled to the forward motion. This assumption
is not a serious determent to the realism of the intercept
problem since the lateral displacement will typically not
exceed 5% of L on either side of the mean initial LOS.

The initial lateral position of each player is assumed
a random variable ndrmally distributed about L with the
mean equal to zero. The uncertainty in the lateral position
of the attacking missle arises from accumulated error picked
up during the launch and midcourse preengagement phases of
ICBM flight whereas the uncertainty in the lateral position
of the defending antimissle is dued to the inaccuracy in
controlling the violent acceleration subjected during the

launch phase which is assumed prior to commencement of this

problem.
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The capture zone L is a measure of potency of the

{ﬁ interceptor. The width of this zone depends upon the
characteristic of the proximity fuse used in the warhead

- of the interceptor. The scoring zone rg is a measure of
both the potentcy of the attacking ICBM and the vulnerabi-
lity of the target. The width of rg depends upon the ex-
plosive characteristic of the warhead of the ICBM and the
;: vulnerability of the target being attacked. The target is
considered destroyed if the ICBM can get within the scoring

L zone at the time Tg. Normally.rx, will be much smaller than

. rs.

4.2 Formulation of the Problem

The missle antimissle problem described in the above
A section will be formulated as a nonlinear stochastic dif-
5y ferential game as follows:

4.2.1 Dynamics of the Problem

The parameters that are important to both
EE players are their respective lateral positions normal to
s the line L. As mentioned before, the lateral maneuvering
- is assumed uncoupled to the forward motion, and the players
2 are assumed able to maneuver laterally by controlling

their lateral velocities:

"
S

- iu(t) = cu(t); xu(o) cecescscsssscsfd.la)

%, (t)

c,(t): x,(0) = Xyp eeeeecnieeec.s(4.1D)
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where cu(t) and c, (t) are instataneous lateral velocities
controlled by U and V respectively. The initial conditions
Xyo and xX,, are random variables are normally distributed
with zero mean and the covariances 0121 (0) and 6‘2, (0) .

These probability density functions are shown by equation

(4.2).
£(x. ) = 1 exp [-x2 /2 62 (0)] (4.2a)
uo T 0TI uo u
u
Flxye) = 1 exp [-x2, /2 9% (0)]......(4.2b)
GV(O)VZH

The lateral velocities cu(t) and cv(t) are then functions
of random processes x,(t) and xv(t). These velocities are
limited to within 10% of their associated average forward
speeds to validate the uncoupled assumption.

The vector §?(t) = [xu(t)s x,(t)] is assumed to be
a Gauss Markov process where only two statistics, a mean
and a convariance, are needed to specify it completely. To
make this assumption valid, the system that generates the
process must be linear. Thus we are required to choose
cy(t) and cv(t) as linear functions of xu(t) and xv(t).

For the interceptor, player V, the important quantity
that will have to be minimized is the lateral distance
between him ana the attacking missle U at the interception
time x,(T) - FV(T)' However, .at any particular time before

the interception time t< T, xu(T) - xv(T) is not available
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to V. Therefore, V has no choice but to use the most recent
corresponding information that is the best indicator for

xy(T) = xy(T), namely x (t) - x,(t). Hence c_(t) is defined

as
Cylt) = v(t)Ix,(t) - xv(t)] cesess (4.3)
where v(t) = feedback gain function, to be found
as V's control
xu(t). xy (t) = current states of each players

For the attacking missle, player U, the most important
measure for him is the distance by which he misses the
target, xu(Ts), at the time when hé crosses the target
boundary. Between the interception time T and the target
engagement time Ty, U is not at all effected by any action
on V's part during this interval. Therefore, the problem
in this interval is an optimal control problem with only
one player U starting from an initial state xu(T) and
minimizing the final state x,(Tg) using "reasonable" control
along the way. The problem in this duration can then be
solved as a linear quadratic problem with the result

Xu(Tg) = k x,(T), o<kl ceccaes (4.4)
where the fraction k depends upon the time duration Tg - T
and the weight on the control u(t). For this differential
game then, we shall assume that U can reduce xu(T) by a
given fraction k during the interval (T,Tg]. 1Ideally U
would like to have his feedback function as a function of

xy(Tg) (since he cannot observe the state x (t) at any time).

101




Cu(t)

u(t) x,(Tg) eecescsse (4.5)
with
u(t) = feedback gain function, to be found as
U's control
‘using (4.4) in (4.5)

Cult) = u(t) k x (1) e ... (4.6)

again it is obvious that U do not have x,(T) at any time
prior to the time of interception equation (4.6) is not
causal. Therefore, the best he could do is to use the most

current information xu(t) instead of it. Hence we have

C,(t) = u(t) k xa(t)  eeeiaal.n (4.7)
Substitue (4.3) and (4.7) into equations (4.1) we have

for 0€t& T

xu(t) = [kx, (t)] u(t); x,(0) = Rig "totesemren (4.8a)
xv(t) = [xu(t) - xv(t)] v(t); xv(0)=xvo ceeeses (4.8b)
in matrix form
x = F x; x(0) = x, crececannse (4.9)
. where

Xy 1 k u(t) | 0 uo

X = =1, F=} —cc==—= A== ' -}EO = ) ==

xv V(t) : "V(t) xvo
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Note that we have arrived at the same equation as
McFarland. However, different rationalizations have been
used. The reason for the difference is because it is felt
that the assumption cu(t) and cv(t) equal to zero in the
interval [t, :T] used by McFarland later becomes a conflict
with the actual values of C,(t) and Cv(t) in the computation.
With the above rationalizations) however, no such assumption
has to be made.

Note also that equation (4.9) is linear since neither
u(t) nor v(t) is effected by the actual value of the random
variables xu(t) and xv(t). Therefore, we can say that u(t)
and v(t) are not functions of xu(t) and/or xv(t). Since X,
is Gaussian given by equation (4.2) and x(t) is generated
by a linear process (4.9), the vector x(t) will remain
Gaussian.

We now proceed to derive dynamic equations for the set
of sufficient statistics of x(t). Since x(t) has dimension
2, the mean vector will be of dimension 2, and the covari-
ance matrix will contain 3 independent elements. Normally
then, the dynamics of this problem should consist of 5
equations. However, it is easy to see that the mean vector
is zero: ,

E [x(t)] = 0 ¥ te [o,T) ceereee.. (4.10)
since the initial value is zero as shown in equation (4.2).

The covariance matrix is defined as
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x-(t) 'ox (t)x (t)
E [x(£)x7(t)] = X (t) = | =cSecceo-oo s S
x,(t)x_(t)]  xZ (¢t)
v ! v
o-oooooc-o-(4-ll)
where — désignates the expected value of the quantity

under it.

Now, if x(t) satisfy the usual Lipshitz condition

then
T T
X(t) = 4 Elx(t)x (t)] = E4d [x(t)x (t)]
dt dt
= E [x(t)x (£)+x(t)x (£))
= FX+ F' X cueeennnn (4.12)
Equation (4.12) can be expressed in components as:
2, _ 2 ] 2
gt (x ) = ku(r) x,(t) Pox, (00 = 0 (0) (4.13a)
%t (xuxv) = [ku(t)-v(t)] xuxv+v(t) xi(t); x,(0)x,(0) = 0
........... (4.13b)
a (x2) = -2 2 20y =02 4.13
g x,) = - v(t) xv(t)+ vit)x, (t)x (t); x, ) = v(0)..( .13c)

Note that equations (4.13) are noalinear since the
controls u(t) and v(t) are indeed effected by the value of
the covariances of the state vector and the products of

control and state variables appear.

2
We can call Xy xuxv, and x

2

v state variables and use

equations (4.13) directly as the dynamics or the state
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equations of the problem, However, as we shall see later,
it is more convenient and more meaningful to use the pro-
jected intercept and the target miss as the state variables.

These variables are defined as

N
xI(t) — xu(t) - xv(t) ® ® & & & ¢ o ¢ " S S0 0 0o (4ll4a)
&
xT(t) - kxu(t) ® 00 00 o s 600000000 (4-l4b)
where
xI(t) = current value of target miss
xT(t) = current value of projected intercept
then
x_(t) = u(t) x (t) - v(t) x,(t) (4.15a)
1 T I
x (t) = Xk u(t) x_(t) (4.15b)
T T _

Again, it is easy to see from (4.14) that the mean values
of xI(t) and xT(t) remains zero throughout the interval

(o,T]. Define the covariance matrix as

— |
x x lox Xp, X, 4 ¥
E ~--I-1, [ Xy x ] = _zl______:_:___ = ;____: _____
X T XX g x% 1! xz'_
(4.16)

and again by the process similar to equation (4.12) we can
show that the elements of the covariance matrix satisfy the

following differential equations:

X (6) = -2v(B)xg() + 2u(t)xg (B); X (0) = ¢ 2(0)+02(0)
%, (8)= [ku(t)=v()]- x()+ult)x, (£); %) (0) = k €5(0
! 2 ! % (4.17p)
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x,(£) = 2k ult) x,(t) i %00 = K20 2(0).. (4.270)

2

Equations (4.17) generates a set of sufficient statis-
tics for the problem since iI(t) and x(t) are zero through-
out the interval [0, T]. These equations then will serve ~
as dynamics or state equations for our problem. A success-
ful use of these equations in solving fhe problem will
demonstrate that a stochastic differential game can be
treated as a deterministic game if a set -of sufficient
statistics can be found and used as state variables in the
modelling of the state equations.

4.2.2 Cost Function of the Problem

In order to find the "best" controls for each player,
some criteria will have to be established to discriminate
one control from another. Since one of our goal is to try
to be realistic as possible, and since this is a stochastic
problem, the probability of survival of the target seems to
be the ultimate criteria. The attacking missle, wanting
to destroy the target, will try to minimize the probability
of survival of the target; whereas the interceptor, defend-
ing the target, will try to maximize the probability of sur-
vival of the target. We shall now attempt to find the

probability of survival as a function of the state variables.

P(survival) 1 - P(not captured and score)..(4.18)
= 1 - P(score/not captured)P(not captured)

The last step follows from the Baysean's Law of conditional
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probability. Using the definition of the scoring zone,

1 for -r <xqp(T)< xrg
P(score/not captured,x (T))=
T 0 OtherWise 000000(4'19)

Now

P(score, xT(I)/not captured) = P(score/xT(T), not captured)
-P(xT(T)/not captured)

Therefore

r

P (score/not captured 5 ¢ (%)ad
( / ptured) = j_r xT(T)/not captured §
s

where the conditional probability density function is defined

as
£ (g) = __1 g2
xT(T)/not captured m exp [ 13 /2x, (T)]

substitue this into (4.20) and use the symmetric property
of the normal probability density function

r
S

1
0 42nx2 (T)

erf [ Ts eeeen..(4.21)
*Jsz (T)

2 rs/v ZXZ (T)

where r
erf {___s____] — exp(-:z)ds
JZ:_(Z (T) AT 0
®s e e 0000 (4;22)

2

2
P (score/not captured) exp [- £ /2x2(T)]d§

(1]

The error function (erf) is a Fortran built-in function

and can be called directly from the computer using Fortran
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language. Now

P(not captured) = 1 - P(captured)

Using the definition of the capture zone

1 if -r ¢x (T)<
P(captured/xI(T)) = c I c

0 otherwise
* ® o 0 0000 (4.23)

Thus

r

r
= -l ¢
P (not captured) 1 ‘[. fo(T) ($)dg........ (4.24)

c

since x (T) is Gaussian, we can show that

I
P(not captured) = 1 -erf _ff;__] (4.25)
A 2x, (T) |

substitue (4.2]) and (4.25) back into (4.18) we obtain

@ [XO(T), xz(T)] = P(survival)

= Jl-erf Ts l-erf re
42x2(T) V2x°(T)
cesceses(4.26)

By éefinition, both xo(T) and gz(T) must be positive.
From (4.26) when xo(T) = 0 then P(survival) = 1. This
checks out with the fact that perfect interception ensures
certain survival. For combinations of low xz(T) and high
xo(T) the probability of survival approaches zero, this
again checks out with the condition when the attacking
missle successfully evaded the interceptor and yet manages
to reach the target.

In order to realize a reasonable and realistic controls

for the problem, and integral penalty function must be added

108

............
.......




.S e
A e el e

'''''''''

to the cost function. The most direct method is to penalize
the squared values of the controls u(t) and v(t) with proper

weights. Using this approach, we define

e

T 2 2
I(U,V) [Qlu (t) - sz (t)]dt ..o-oo-(4.27)
o -

where Q1 and Q, are positive quantities representing appro-

priate penalizing weights on controls u(t) and v(t) respect-

’ively. The actual choice of Q1 and 02 will be discussed

later. The penalizing term for U is positive because U is
trying to minimize the cost function. This term will
restrict U from using "too large" control. Player V has

a negative penalizing term because he is trying to maximize
the cost function. Too large v(t) in any interval of time
could results in a negative value for I(u,v). The composite
cost functional for this problem will then be:

J(u,v) = j’[xo(T), xz(T)] + I(u,v) ........ (4.28)

4.2.3 Constraints

This pursuit-evasion problem has been formulated in
such a way that the subsequent effective lateral vel: .ities
will not exceed 10% of the associated average forward
speeds. Thus the assumption that the forward motion is
uncoupled from the lateral motion can be used throughout
this chapter. In addition, hard constraints are put on
u(t) and v(t) as follows:

lutt)f €2, |viv)] €1 ¥ t €lor) .......(4.29)
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These constraints have an equivalent effects of limit-
ing the lateral accelerations of the missles. The larger
limiting factor for U as compared to V is used in order to
be consistent with other parameters which will be discussed
in the section on the computational aspects of the problem.

4.3 Convergence Control Technique

Before we embark on other computational aspects of the
problems, it is well to note here that the DDP algorithm
will not converge for this problem without the use of some
kind of convergence.control scheme. McFarland need the
"step-size” method developed by Jacobson and Mayne in solv-
ing his préblem with good result. The so called "step-size"
method when used with the first-order algorithm developed
in this report, however, did not warrant convergence for
this pursuit-evasion problem.

Obviously, some other convergence control scheme is
required. One such scheme which has demonstrated good
convergence property for a large varieties of problems was
developed by Jarmark in 1975. Anderson(43) has used this
scheme to derive feedback control for pursuing spacecraft
with excellent results. After the "step-size" method
failed to provide convergence for the solution of this
problem, several other convergence control schemes were
tried. It was finally decided that Jarmark's scheme was
the most suitable for this problem. This scheme will be

briefly described in the rest of this section. More
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detailed discussion and proof can be found in references (32)

to (34).

The reason why the actual cost change deviates too much
from the predicted cost change is the violation of the
assumption that 4 x is small in the derivation of the DDP
equations and the higher order terms in equation (2.33) can-
not be neglected. Since the DDP algorithm worked out in
chapter 2 deals with the inner minimization, we shall also
deal exclusively only with DDP minimization here. However,
it is clear that the same technique can be used with inner
maximization for the ﬁinmax case also with only a few minor
adjustments. :

Jarmark has shown(34) that the magnitude of A x(t) can
be restricted and the Taylor's series expansion eqguation
(2.34) can be made valid by adding a penalty term to the

integral of the cost functional eguation (2.20). Thus

equation (2.20) can be rewritten as follows:

T
J(u(t)) =4 (x(T),T) +J.‘ [L(x,u,t)+ A_q(t)TWAt_J_(t)]dt
o .
o e s 0000 000 (4.30)
Then Jarmark proceeds to show by using Theorems and

Lemmas that:

1. Au in each iteration as measured by the metric

. T 3 .
a(ut,ui-l) = J lgl—p_l'1| dt ........(4.31)
- 0

can be made arbitrarily small by the choice of the weight-

ing matrix W.
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2. There exists a W such that the series expansion
equation (2.33) and (2.34) is valid.
3. For W) 0, a reduction in cost at each iteration
is obtained if A u(t) # 0 for some t € [0,T].
4. The solution of the artificial cost in equation
- (4.30) converges to the same solution of the original cost
equation (2.20).

These are existence Theorems, and so far there is no
hard and fast rule on how to choose W. If the element of W
is too large the convergence will be slow. On the other
hand, if the element of W is too small, the assumption A x
is small may not be valid. Jarmark suggests the following
procedure.

For a starting value choose a W base on prior experi-
ence on the same type of problems. The structure of the
problem could be used, for example, the elements of W should
be small when the problem is close to a linear problem.
After each iteration, the stopping rule will have to be
changed from |a(0){< & to

la(0)] < E ceeeess.(4.31)

1+ jwi
If the stopping rule is not satisfied then use the conver-
gence index domain shown in Figure 7 to adjust the element

of W.
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Figure 7. Convergence index domain

Area 1: A5t & 0, do not except the iteration, increase
al(0) |
the component 2-5 times.

ey 5 o

Area II: the element wi of W can be adjusted by the
foliowing formula
2 wh= - ast/toe) al + i)
cevesess.(4.33)
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Area III: use approximately the same value of w' in the

last iteration. w! may be increased or decreased

slightly in this situation. Increase if close to
.A.Ji axis, and decrease otherwise.
This procedure is used with very good convergence
property for the present problem.

4.4 Computational Aspects of the Problem

We now have the problem in which the attacking missle
U has to find a(t) to minimize the maximum possible cost and
the intercepting missle V has to find v(t) to maximize the
minimum possible cost. The cost functional and the dynamics
of the problem as.developed in section 4.2 may be written as
follows:

Cost Functional

J(u,v) = 1l-erf [ rg__J .4 l-erf [ e ]
‘VZXZ (T) ‘VEXO (T)

T 2
+ f [Quu2(t) - Q,v2(t)ldt  .........(4.34)
0

Dynamics
Xo = =2Vx, +ux, i x,(0) = 6u (0) + Uv (0)
eeeeseess(4.35)
L] . 2
i xl = [ku - V] x1+ux2 ; xl(O) —— k Uu (0) vwooo(4-35b)
. 2 2

These state equations are valid for t € [0,T]
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. Constraints

lvet)] & 2, |vi(t)l € 1 for 0 gt T .,.....(4.36)

4.4.1 Parameter Value Assignment

The missles engagement distance is assumed typically
around 35 miles or L = 180 kilofeet. The kilofeet unit is
used here because it is more convenient and more widely used
‘unit for this type of problem. As mentioned before the

{ forward motion is uncoupled to the lateral motion. There-
- fore, only the average forward speeds for the players rather
than the instantaneous forward speeds in the whole engage-
ment time interval are needed. Typical forward speed for
the attacking missle is S5, = 15 kilofeet/second while the
intercepting missle is typically slower at Sy, = 7.5 kilofeet
per second.

At these average speed, the players will cross the
line of interception at the time:

T = L = 8 seconds
+

Su Sv

The attacking missle, if escaped from the interceptor, will

cross the scoring boundary at the time:

T = = 12 seconds

L
» . S s
_ Su
Using these average forward speeds, the distance between the
line of interception and the target is:

Ly = S,T = 60 kilofeet
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The initial lateral dispersions from the line L are

normally distributed with the mean zero for both players.
The initial lateral position of the attacking missle is
simply more dispersed because it involved more distance
and time covered before commencement of the differential
game. The initial standard deviation for U's lateral
position is Uu(O) = 3 kilofeet while that of V is

av(O) = 0.5 kilofeet.

The fact that the scoring zone is larger than the
capture zone should be clear and has been explained in the
description of the problem. We shall assume rs = 0.5 kilo-
feet and ré = 0.25 kilofeet for the purpose of this study.

A typical way of selecting the weights Q; and Q, for

the penalty functions of the controls is to use

T x maximum value of u2 32

Lo
[
]

n
[+ ]

. 2
T X maximum value of v

0
N
]

Experimentation around these values gives Q; = 0.0625
and 02 = 0.125 for the best results in this study. McFarland
also used these values in his report. Between the time of
interception and the target boundary crossing time, we have
shown that U can cut his lateral dispersion down by a fixed
fraction k depending upon the other parameter values. We
shall assume k = 0.5 for this report.

In summary, we shall use:

T = B8 sec Ou(O) = 3 kft rg = 0.5 kft Q) = 0.0625




k = 0.5 UV(O) = 0.5 kft r. = 0.25 kft Q, = 0.125

E? 4.4.2 Maxmin Solution

We shall follow the algorithm steps covered in section

2.5. To start off the algorithm for the maxmin control a
nonimal control v,(t) can be approximated by maximizing the
cost functional equation (4.34) subject to the dynamic
equations (4.35) with control u(t) = oyt € [0,T]. Using
this nominal control for V will have the effect of forcing

U to do "something™ in order to minimize the cost functional.

With u(t) = 0, the state equations (4.35) become

N _ _ . , _ 2 2 .

X, = 2vxo : xo(O) = au(0)+ OV(O) ....... (4.37a)
X = - ; €) = k 02(0) (4.37b)
xl - Vxl r xl - u ® s 0000 e .

R 2 2

x, = 2kux, : x2(0) = k ch(o) ..... .. (4.37c)

With these state equations, the Hamiltonian is:
= 2 2 - A 4.38
H = Qqu® - Q,v° = 2vx, N5 - vx3 X ceceena (4.38)

where N's are costate variables expressed by the following

differential equations:

. = - PH =xvx. iAT) = 2 ....(4.39a)
No EER ° ° 3 X, (T
AN o= - g_g = VvA; iXp(T) = 0 «-..(4.39Db)
1
;‘ = - 2H = 0 i Xy(T) = _3 ve..(4.39c)
2 X, “2x,(T)
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Assuming for the moment that |[v(t)] <1l for 0 £ t £ T,

the optimality condition is:

OH = =20,V = 2X_ A_ = X N = 0
Hence
v(t) = '(2xo>‘o + Xy >‘1)/202 .......... (4.40)

Differentiating (4.40)

vit) = =(2%o g F 2x N+ X)X, 4 XN ,)/20,..(4.41)
Using (4.37) and (4.39) in (4.41) we have
vit) = -(-2vx, 2o + 2vo N - vxl)«l+vxl)\1)/202 =0 - (4.42)

Therefore, v(t) = constant = .(..e... (4.43)

Now, equations (4.37) and (4.39) can be solved analytically

with the following results:

x (8) = x (e 2Vt . a_(t) = 2\ (T)
x;(8) = x3(00e7VE ;XN (B) = 0
xp(t) = x,(0) F R (8) = N, (m)e?ViET)
........... . (4.44)
Substitue (4.44) back into (4.40)
-2vt
vit) = =2x,(0) N _(T)e cesenn ceceaans (4.45)

and from (4.39a) we have
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b o

2 r
= - c .[ _2__e-rc/2x°(T).].erf [ s ]
(2xo(T))3/2 ok ' 2 x 0,(0)

crecrececccss(4.46)

- 2 2
Use x_(T) = e 2vT [6%(0)+ ¢2(0)] in (4.46) anad substituting
. u v
back into (4.45) yeilds
r

v = c .exp[vT—riexp(ZvT)/z(di(o)+aj(0»]
2
Q, va2u (cfl(on 02 (0)

[ r
.erf s
2 x du(O)] Ceeenann (4.47)

Notice that equation (4.47) is transcendental, it must be
solved numerically. With the parameters given in section
(4.4.1), we found that v = .25. Therefore, we shall use
vo(t) = .25 for 0 € t £ T as the starting nominal maxmin
/control for our algorithm.
The next step is to find all the local minima for

(1) and uo(z) are found by

J(u,vo). Two local minimizing u,
repeated applications of DDP routine for different values of
starting u(t). Table 10 summarizes the numerical results

for the maxmin iterations using vo(t) = ,25, uo(l)(t) = -,25,
and uo(z)(t) =',25. The two starting values of u(t) lead to

two different minima. Extensive preliminary testing shows

that only these two local minima exist for this problem.
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The pertinent equations for the applications of DDP
routine are as follows:

H = Qlu2 - szz + 2(uxl-vx°)Jx + ((ku-v)x1+ux2)Jxl
o

+ zkuszZ oo.oo.-.o(4.48)

*
u (t) = -(leJxo+(kxl+x2)in+2kx2Jx2-ZWuo)/2(Ql+W) cees(4.49)

* *
If Ju (t)! > 2, then set the corresponding|u (t)] = 2 since
H is convex with respect to u. 1If u*(t) is not on the bound-

ary then equations (2.49) become

alt) = (u () - ug(e))? ceeerree.. (4.50a)

Jxo(t)

2vg(t) 3, (£) et (4.50b)

* *

Jxl(t)= -2u (t)Jxo(t) - (ku (t)—vo(t))Jx(t)......(4.50c)
. _ *

Jx (t)= -u (t) [Jx

(t) + 2k J_ (t)] ceeeens.(4.50d)
2 X2

1

with the terminal conditions

a(r) = 0 e ....(4.51a)
Ty (D) = -rcexp(—rz/zxo('l‘)erf (xg/4 2x,(T)) /¥ 2m xo(T)3/2,
cecesecesas(4.51b)
J (T) = 0 cesesan ee..(4.51cC)
X3
' 2
sz(T) =rg exp(-r§/2x2(T)). [l-erf(rc/'VExO(T))yﬂ5ITx2(T?/

cesesencasss(4.51d)
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...................................

e The time T = 8 seconds is divided into 64 intervals and
(v equation (4.49) is used before each step of integrating

2 equations (4.50) backward, the value of u*(t) for each step
ﬁ; is also stored in the memory to be used either as the mini-
" mizing control or as the nominal control uo(t) for the next
iteration. Eguation (4.50a) is used in case u*(t) is not on
fi‘ the boundary. If u*(t) is on the boundary, however, the

following equation must be used
° *
—a(t) = H (E'u f J-X-’t) - H(_x_,uo'J‘x-'t) o..---o-a-oa(4a52)

iﬁ with the same terminal céndition equation (4.5la).

;ﬁ It must be noted that the simple Euler integration

%n scheme used very effectively in the last chapter is not an
:' adequate integration scheme for both the state and the DDP
equations. More accurate integration scheme was needed, one
such scheme is the Runge-Kutta fourth order integration

method. The Runge-Kutta integration scheme was used both

PR

in forward integration of the state equations (4.17) and

I AL

<+

- the backward integration of DDP equations (4.50).

e Refer to Table 10, for v, (t) = 0.25 and uél)(t) = -0.25,
'E: - the cost is 31) = .712. The convergence control weighting

factor W = 1. After integrating (4.50) back to t = 0, the

predicted cost change a(0) = -,013. Using the new control,
u*(t) found in the process of backward integration, the new
cost was evaluated and the cost change A J = -.194. This

process was repeated until a(0) is smaller than .001 -.
1+W
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MAXMIN SCILTICN SZURD  COUSTH= Qenz3Cs (CSY¥ 3=
TIMnE USTAR] LSTAR2 VETAR
1 €C.20573 =C.83563  C,024837
F €Ce2GEG4  -0,63200  C.C2233
3 0.23€3C -0.42847 C.GZ2181
¢ Ce2778C -0,42502 C.02040
£ Co2€742 =0.421€2 C.C1512
£ Ca23215  =0,43897Q  C.0%9Q00
? Ce28€G5 ~-0e41502  C.01702
€ 0.22€75 -0.61175  C.C1€2C
S C.22€662 =0,40351  C.O01SES
1c QeZl€84 -0,403526 C,G1S05
11 C.20€17 =-C.4016S  C.Cl4ag?
12 CelSE77 =-0.268€6S  0.01487¢ .
12 Ce18S1E -0.2553€6  €.01492
14 Cal743€ -CL,3S51GE  0,015730
15 Ce1€E322 -0.38335  C.C1593
1€ C.15171 =-0.22463  C.C1€8€0
17 Cel3677 =-0.28127 C.01732
18 _0.12732C  =Q0,37750  Q.G1534
16 C.11425 =0.3725%  C.C2l02 ,
20 Co10CS2 =-0.26954 C€.C2302
3 C.08€EC2 =-0.36532 C,C2821
22 Cal7CPC  =0.3€093  CaC2751
23 0.0543% =-0,35¢35  C.03ce:z
24 0.C371€ =0.23515S  ©.,02406
2% CeC1E7E =-0.34383  C.C27€S
2€ =Ce0007S_  _=-0.2a125 _ C.031¢s _ —
27 -C.02166 =0.,33IE72  C.(C4ES6
2€ -0.04326 =0.329%0 CeCSCEO
2% -Ce.0£752 -0,32378  C.CEE62
20 -0.0927¢8 =-uve.31734 Cl.(CE1CS3
a1 =C.11652 -0.21035 C.Cf€81
3z -0.18EC4 =-0420340 C.C725¢
22 =Cel7ECE —(e25585  CaC754$
3‘ -G.E!CBG "0022138 0006‘:40
3% ~0.2442E% =C.27547 C.CG2EE
2€ -C.23009 =~C.27058 C.101234
37 ~Ce317E7 =-G.28116  0.1C527
__3¢ ~Coe357€4 =0,2S12E5  C.11777 _ i
kI =C.2564C -0.26074 Oe.l12652
ac ~C.343217 =-0.223€1 Co13563
3! ~(.48ES8 -0,21782  (C.14:C7
62 ~0.S36€EE -0.20S532 C.Yca8s
43 ~CeSEEIT =0.152C7 O.1€458
44 -0,6375% -0.17801 C.17532
as ~Ce65138 =0.16207 C.129€01
4€ ~Ce78ESE  =0,1472C  C.1SEFE
%7 -C.E8C235 =-0.13022 GC.zCE1%
4€ -Ce.35177 =0.11236 C.215S8
45 -C.32155% -0.05222 C.z2122 .
_5¢ ~C.G3257 -0.07222 (C,24204 -
€1 ~1.C36E1 -0.05105  Ce.z25502 j
Sz -1.10752 =0.,02779  C.2¢714
53 -1.17175 =0.002%2 0.27527 .
-S4 -1.22€2C  0,02370  0.351€3 —
s3 =1.3C0C9%  0.05222 Ce3C40E :
5¢ ~1.2€%82Z  0.08282  0Q.21&4¢ -
5?7 -1.83CSS  0.11567  0.322€35
S5¢ -1.49503  0.1509%  0.34322
SS =1.55€54 013300  0e.3c2:=3
€c -1.%220€  0,22565  GC. 2£57€ ;
€1 -1.6841S  0.27413 C.37797 |
€2 ~1e764512  0,32182  C,.38634 »
€3 =T, BCEi€7 0.37724 €. 4C16E 1
€3 . =1.862€65 0.42506 0.4132€ :
Table 11. Computer Printout of Maxmin Solution
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After eight iterations, the DDP routine converged, the
latest nominal control is the local minimizing control,
uél)(t) plotted in Figure 8b.

The second local minimizing control, u (2)(t) also

(e}
sﬁown in Figure 8b was found in a similar manner using
vo(t) = 0.25 and éjzt) = -0.25 as starting nominal controls.
With these controls, J(z) = .878. Again using W = 1 the
predicted cost change was found to be -.0005 while the
actual cost change was -.018, the minimizing control in
this iteration was accepted as the new nominal control and
so on. DDP routine in this case converged in seventeen
iterations.

At the two local minimizing controls, the function -

space gradient of mincost with respect to the maximizing

control is found by the following equation:

g(t) = -Zsz(t) - 2xo(t) Jxo(t) - xl(t)Jxl(t) coeees. (4.53)

The norm (g(l), g(l)) and the inner product (g(l),g(Z))
was found by using
(1) (3 T 3 3
(g ", 9 ") = g (t) g(t)dt .......... (4.54)
0

1
Using the gradient: g{ )(t) and g{z)(t), the norm:

(1) (2)
(g{l)(t), g{l)(t)), and the inner-product: (g; ' (t),g, (t)),
the step length was calculated. The logic used to find the

step length for this problem is to alter the maximizing
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control v (t) in such a way that appreciable increase of the
mincost 3(1) is found and yet the minimizing control use in
the last iteration will not be too far off from the new one.
In addition, we do not want the new mincost J(l) to be
greater than the new mincost J(z). Experimentation shows
that the step chosen to realize a predicted change in min-
cost of 20% worked very well in most cases. However, the

step size limited to a maximum value of one. The new

.approximation to the maxmin control is then found by

(1)

2 () evececesceaeaec. (4.54)

vl(t) = vb(t) + step . g
This is plotted in Figure 8a.

The first new local min for vl(t) was reached in three
iterations of the DDP routine, while the second one was
reached in one iterations. Examination of the mincosts
reveals that they are approaching one another. Thus we may
suspect that a crossover point may be found. After three
outer approximations to the maxmin control, the crossover
point was indeed found, the value of the controls at this
crossover point is shown in Table 11.

In figure 9, pertinent state information are presented
for the control combination v(t) and ;(1)(t) or the maxmin
control combination number 1. The standard deviation for
the Target Miss is plotted as J;;‘l); this curve shows
that the probability density function of the projected
Target Miss first expands because of the positive value of

(1) (¢) up till the time t = 3.25 seconds, then the negative
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value of 3(1)(t) causes the same process probability density
function to continually contract and end up with qf;él) =
0.3 kilofeet, a significant drop from the starting value of
1.5 kilofeet. The standard deviation for the projected
intercept miss is plotted as 'J;gl). This curve shows that
the probability density function of the projected intercept
miss first expands because U is using greater positive
control than V. However, around t = 3 seconds, V start to
apply greater positive control while U control becomes -
negative, the probability density function contracts
rapidly, the players are moving towards one another. The
curve goes through a minimum and start rising again, this
in effect tells us that V has overshot the inside maneuver-

ing attacking missle after t = 7 seconds.

Figure 10 presents the maxmin effective lateral veloci-

ties for each player computed from the following equations:

cz(t) uz(t) X4 (t) ceecsecssses(4.55a)
u

2 2
cv(t) vi(t) xo(t) cesssecssss(4.55D)

These curves show that both quantities are well within
the lateral velocities limit of 1.5 kilofeet/second for U
and .75 kilofeet/second for V. The important point here
is that U is much bolder for the maxmin game than V since
in this situation, it is V who must play his "security

level” control and guard against any possibility that U
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night come up with.

Figure 11 and 12 presents the same information as
Figure 9 and 10 respectively, only this time with the con-
trol combination of';(t) and 3(2)(t). The negative feed-
back causes both standard deviations to drop initially
until t = 6.6 seconds. After which time 4;52) increases
becauses of positive value of 3(2)(t) and J;éZ) is level
off a little because now U is trying to "get away" from V
rather than just "bearing down" on the target. From Figure
12 Vv is again much more conservative on the lateral velo-
city than U.

Figure 13 shows sample trajectories with control
combinations ;(t), G(l)(t) for Figure 1l3a, and ?(t),ﬁ(z)(t)
for Figure 13b. These trajectories are generated by equa-
tions (4.8) using au(O) and GV(O) as the initial wvalues
for the random variables Xy and Xy respectively. Clearly,
the control combination G(t), G(l)(t) represent the case
where U initially maneuvering away from the target to
draw V out, then using his superior control capability to
maneuver inside. Whereas the control combination V(t) and
G(z)(t) represent the case where U first tries to bear down
on the target and then uses his superior capability to
maneuver outside to get away from V at the line of inter-

cept.

4.4.3 Minmax Solution

As before, we need a nonimal uo(t) to start the
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algorithm for the minmax solution. Again we shall derive
this nominal control by assuming Vo(t) = 0 for 0gt g T.
With U using this control u,(t), V would be forced to do
"something" to try maximize the cost functional.
Proceeding in the same manner as in the maxmin case,
it is found that with vo(t) = 0, uo(t).= constant. With
this fact in mind the state and costate equations can be

solved as before and substitue in

Uy = [2x3 () M (£)+kx, (t) Nq (£) +x5(t) )\l(t)+2kx2(t)>s2(t)]
/2Q; (4.56)

The resulting transcendental equation, even though more
complicated, possesses the same structure as equation (4.47).
Numerically solving this transcendental equation, u,=-0.125
is used as the starting nominal control for the minmax
algorithm.

The next step is to find all the local maxima of
J(u,,v) using the DDP routine whose pertinent equatioﬁs

are as follows:

*

v (t) = (2WV°-2x°Jxo - lexl)/2(Qz+W) eseccesssscveses(d4.57)
. * 2

a(t) = Q,(v - v,) Y 181 EY
3 = 2v 4.58b
xo(t) - vao o-...ooooo.o.o( 05 )
¢ *

J, (t) = =2u.J =~(ku.-v )J ceeeccccssessvss(d4.58C)
Xl Oxo (o] xl

3 E - AR EEE RN . d
sz(t) uo(Jxl+2ka2) (4.584)
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Equation (4.57) is used for Iy I€1. If Iv.1 > 1 then set

Iv*l = 1 while preserving the same sign and use egquation
(4.52) instead of equation (4.58a). Incidentally, the
terminal conditions on equations (4.58) are the same as
equations (4.51). Successful backward integration of
equations (4.58) while solving for v*in (4.57) depends
upon the proper value of the weighting factor W for the
convergence control. For the problem at hand DDP routine
converges to one maximum value from a wide selections of
starting nominal control vo(t). Intuitively, once U's
control is specified, then his trajectory is predictable
from equation (4.8a). Knowing U's trajectory then V can
aim at the position on the interception line and just
minimizes the intercept miss which in turn maximizes the
probability of survival of the target. It is reasonable to
expect a unigue optimal control for V to achieve this
objective.

Table 12 summarizes the numerical results for the
minmax iterations. For u, = -0.125 and vg4 = 0.125, the
cost J = .758, the predicted cost change is .003 while the
actual cost change is 0.145. The new cost J is .903 and
v' is accepted as v_ for the next iteration and so on. For

o

the current u_., DDP routine converges in seven iterations.

o
The maxcost gradient designated as 9, is then computed
* .
for the control combination uy, v,. The norm of this max-

cost gradient is computed from

136

RN et s a ‘ - . . L e e
" " g 0 "a e PR NS S WG W VPR S W f S Y PP i S e N A s




L

D S A e SR A ]

A A
A L " e m

.........

Table 12. Minmax Iteration
MIN | MAX J W a(o0) A
u, | vo .758 1.00 2.98E~3 | 0.145
.903 0.90 3.30E~3 | 5.00E-2
.953 0.81 4.40E-4 | 3.00E-2
.956 0.66 3.10E-4 | 2.90E-3
.959 0.59 7.00E-5 | 8.00E-5
* .959 0.53 1.80E-4 | 1.00E-3
Vo .960
(90+9,) 0.0119, STEP = 1.00
u; vy .822 1.00 2.67E-3 | 5.40E-2
- .938 1.46 7.00E-5 | 1.00E-3
(93,9;) 0.1019, STEP = 1.00
.762 0.90 8.00E-5 | 1.95E-3
.764 0.81 8.00E-5 | 1.00E-3
.765 0.729 7.00E~5 {1.00E-3
* .766 0.656 6.00E-5 | 1.00E-3
vy .766
(9,,92) .0075, MINMAX SOLUTION

........
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2
(go'go) = J; goctldt ooo.ooo-..(4'59)

The step length is computed using the same logic as in the
5 maxmin case. The new nominal control combination is

E : Uy (t) = ug(t) - step.g(t) ceeessee..(4.60a)

1 v, (£) v;(t) : teveevens.(4.60D)

The process is then repeated. After two approximations for
outer minimization, the norm of the maxcost gradient is

negligibly small and the minmax solution is found with
A
u(t) = uz(t) ] . 'l....'.o.‘(4o61)

The value of u(t) is shown in table 13 for sixty-four incre-
mented time scale. The successively improved approximations
to the minmax control are plotted in Figure l1l4a, while the

corresponding maximizing controls are plotted in Figure 1l4b.

Figure 15 presents pertinent state information by
showing standard deviation for projected intercept and tar-~-
get miss. The probability density function for the target
miss initially drops sharply as shown byalz; caused by the
fact that the players (using minmax control combination) are
moving towards one another in this time interval. The
positive control G(t) for 4.4 ¢t £8 not only slow down the
rate of decrease of the intercept miss but also increase
the target miss as U is moving away from the LOS.

Figure 16 shows the reversal of roles between U and V.
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Figure l4a. Successive Approximations to
Minmax Control

Figure 14b. Locally-Maximizing v(t) for each
Successive Approximation
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In the maxmin solution U was clearly the more agressive
player, while in this case for the minmax solution U has
to protect himself against all possibilities and becomes
much more conservative than V.

This fact is also confirmed in figure 17 which is a
sample trajectory for minmax solution. U stayed pretty
close to his initial lateral position while V is consider-~
ably bolder in going out to meet the attacking missle. For
the minmax case, the players pass the intercept line with
greater lateral distance away from the target than in the
maxmin case.

4.4.4 Net Solution

The net solution of the game consists of the minmax
control %(t) for the attacking missle player U and the
maxmin control V(t) for the intercepting missle player V.
Using these strategies neither player needs to assume any
prior knowledge on what the other player might do. The
inequalities (2.7) also assures that both players will bene-
benefit by using these "secure strategies”.

The net cost of the game J(G,;) is 0.756, an improve-
ment for U for the minmax cost of 0.766, and an even more
improvement for V for the maxmin cost of 0.659.

Figure 18 shows a sample trajectory using the control
combination ﬁ(t) and v(t) generated by equations (4.8) using
standard deviations ¢,(0) and dv(O) for the initial values

x,(0) and xv(O) respectively.
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4.5 Discussion of the Problem

This problem has raised several significant points
about general nature of differential games and the relative
merit of the methods required to solve them. These points
will be discussed in this section. First the results of
this problem confirm that a saddie point is not required to
exist in a general two-person zero-sum differential game.
In this case, the maxmin solution is a crossover point. It
must be emphasized, however, that a crossover point can be
used as a solution only in the case where the values of
the local optimal points in the inner optimization are
moving towards one another after the improved successive
approximations of the outer optimization process. Only a
very limited class of differential game can be shown to
possess a saddle point. One such problem is a linear
dynamics, quadratic cost, two-person, zero sum determinis-
tic differential game.

The seemingly simple problem described in this chapter
with several simplified assumptions has turned out to be a
complicated problem with nonlinear dynamics and nonguadra-
tic cost. Even the initial guess of the initial nominal
control solving as an optimal control problem cannot be
treated analytically. The only way out was to use an
efficient algorithm to solve the problem numerically. The

use of a computer is inevitable
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The defensive aspect of using the minmax and the max-
min solutions or the so called "security level" solutions
must be mentioned. With these strategies, each player can
rest assure that his opponent can induce no more harm to
him than what he expects. He can only gain if the opponent
decides to shitch to some other strategy. dne traditional
- way to solve an iantercept problem was to derive a likely
ﬁi strategy for the attacking missle. Many authors have used

colored-noise process to describe the behavior of the

attacking missle and solved for the interception strategy
as an optimal control problem. It is unreasonable, however,
to expect that the attacking missle will oblige in the
actual case and behave like a colored-noise process espec-
ially if he knows that the interception strategy has been
derived in such manner. Some authors suggested "mixed
strategy" as the solution of a differential game where a
saddle-point does not exist. However, the "mixed strategy"
solution is very hard to compute even for a very very sim-
ple unrealistic problem. Implementation of such strategy
in an actual combat encounter does seem to be too far
fetched.

Sufficient statistics are used as states variables for
this problem to obtain meaningful results. This method
greatly reduced the complexity of stochastic differential
game. However, the number of state variables are greater

than the deterministic cases. The current pursuit-evasion
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problem requires two physical state variables, the actual
sufficient statistics is five: two mean value functions
and three independent covariance matrix elements. If the
physical controls are accelerations rather than velocities,
four physical states variables would be required leading to
fourteen elements in the set of sufficient statistics, and
so on. To keep the problem tractable and retain physical
insight, the problem should be simplified as much as real-
istically possible.

One reason that causes differential games to be much
more complicated than simply being an extension of optimal
control problems is the existence of conjugate points.

The main reason conjugate points appear in differential
games as a rule rather than an exception is that one must
simultaneously maximizing and minimizing the same cost
function. The first order algorithm developed for this
report at first does not converge on a wide varieties of
starting initial conditions even with the use of the "step
-size"” convergence control discussed in Chapter 2 which
was used successfully in McFarland algorithm. Jarmark's
scheme for convergence control is then used with excellent
results. Singular control becomes non-singular with the
proper convergence control weight described in section 4.3.

The formulation of the stochastic nonlinear pursuit-
evasion problem in this chapter turns out to be the same

model that McFarland used in his report. However, .
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different rationalization was made in the formulation pro-
cess. It is believed that the rationalization used here
is more realistic as explained in section 4.2. Since the
same model was arrived at except for the addition of the
control constraints here, comparison of the computation
results could be made. Since McFarland used second order
algorithm for inner optimization and also computed a new
estimate for the inner optimal control for each successive
outer approximation, the amount of computations required
for each iteration of McFarland's DDP is about four times
the amount of computations required for each iteration
used in this report. On this basis, the amount of comput-
ations required to reach the maxmin solution in this report
is about one~half the amount required by McFarland's
algorithm. The minmax computation requirement is even
more impressive, only 6.35 seconds is required for the
computer execution time while less than one-sixth the
amount of computation is required when compared to

. McFarland's method to reach the same solution. Therefore,
the algorithm presented in this report is more suitable

to the real time application of pursuit and evasion

differential game.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This research deals mainly with the most natural
applications of differential games: namely the pursuit-
evasion problems. Except for a very few simple unrealistic
problems of this type, analytical solutions are virtually
impossible to obtain. Fast-and efficient algorithm is
needed before the solutions of realistic pursuit-evasion
problems can be solved and implemented in the actual physi-
cal conditions.

A numerical first order method without a saddle point
assumption and capable of handling the control and state
constraints is developed in this report. The algorithm is
used to solve for the minmax and the maxmin solutions
independently to be used by each player.

Linear Quadratic differential game without any cons-
traint can be solved analytically even without a saddle
point assumption. The analytical solutions are offered in
this case. The case with limiting control constraint
cannot be solved analytically. The numerical methods with
and without the saddle point assumption give the answer
for this case with negligible difference in computation

time. .
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A nonlinear stochastic pursuit-evasion problem is
developed and treated as a deterministic problem via a set
of sufficient statistics. This problem does not converge
with the alyorithm developed in this report without an
éfficient'convergence control method. The step-size
convergence control is not adequate for this problem.
Jarmark's convergence control method solves this problem
when used in conjunction with the first-order algorithm
developed here. Together, the algorithm provide a fast
computation time for the problem. The results of this
problem also strenghten the claim that saddle point does
not exist in a general differential game contrary to the
assumption used by many authors.

On the computation details, we found that the simple

-
-

Euler integration scheme is sufficiedﬁ/ﬁhen used in a
simple linear-quadratic problem presented in Chapter 3.
In the nonlinear stochastic case of Chapter 4, however,
more accurate integration scheme is needed. The fourth-
order Runge-Kutta integration scheme is used in this
latter case with excellent results.

5.2 Recommendations for Future Research

The first fasinating area that could be further ex-
plored in this field is the improvement of convergence
control method. Jarmark's convergence control technigque
may be applied to the second order algorithm developed

by McFarland and compared with the "step-size" convergence
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control of Jacobson and Mayne. So far Jarmark has provided
only the existence Theorems of the convergence control

weighting matrix W. There is no hard and fast rule on how

to find the most efficient W. This author feels that the
convergence index domain used in this report has been
started off.in the right direction. There could be room
for improvement in this area.

Another unexplored area is to let W be time variant.
This would probably be suitable for the algorithm developed
in this report. In the backward integration of the DDP
equations, it does seem that the optimal control generated
near the final time T should be more accurate than that
generated further out near the starting time 0. Therefore,
we could for example let W be a linear function of time
with appropriate slope and initial value to be found by
some suitable logic.

Time delay is another intriging area that must be
faced in the real world. Presently, a few authors has
dealt with this subject. All of them quickly specialize
into simple problem. It would be interesting and benefi-
cial to see how the information time delay would effect
the optimal strategies of the problem presented in this

report.
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